Faculty of International Social Sciences

稲留 涼子

Ryoko Inatome

基本情報

所属
学習院大学 理学部 生命科学科 分子生化学
学位
博士(医学)(神戸大学)

研究者番号
90408691
J-GLOBAL ID
201801016289698851
researchmap会員ID
B000344761

論文

 43
  • Takeshi Tokuyama, Hideki Uosaki, Ayumu Sugiura, Gen Nishitai, Keisuke Takeda, Shun Nagashima, Isshin Shiiba, Naoki Ito, Taku Amo, Satoshi Mohri, Akiyuki Nishimura, Motohiro Nishida, Ayumu Konno, Hirokazu Hirai, Satoshi Ishido, Takahiro Yoshizawa, Takayuki Shindo, Shingo Takada, Shintaro Kinugawa, Ryoko Inatome, Shigeru Yanagi
    iScience 25(7) 104582-104582 2022年7月15日  査読有り
    Abnormal mitochondrial fragmentation by dynamin-related protein1 (Drp1) is associated with the progression of aging-associated heart diseases, including heart failure and myocardial infarction (MI). Here, we report a protective role of outer mitochondrial membrane (OMM)-localized E3 ubiquitin ligase MITOL/MARCH5 against cardiac senescence and MI, partly through Drp1 clearance by OMM-associated degradation (OMMAD). Persistent Drp1 accumulation in cardiomyocyte-specific MITOL conditional-knockout mice induced mitochondrial fragmentation and dysfunction, including reduced ATP production and increased ROS generation, ultimately leading to myocardial senescence and chronic heart failure. Furthermore, ischemic stress-induced acute downregulation of MITOL, which permitted mitochondrial accumulation of Drp1, resulted in mitochondrial fragmentation. Adeno-associated virus-mediated delivery of the MITOL gene to cardiomyocytes ameliorated cardiac dysfunction induced by MI. Our findings suggest that OMMAD activation by MITOL can be a therapeutic target for aging-associated heart diseases, including heart failure and MI.
  • Naoki Ito, Takara Takahashi, Isshin Shiiba, Shun Nagashima, Ryoko Inatome, Shigeru Yanagi
    Journal of biochemistry 171(5) 529-541 2021年12月29日  査読有り
    The transfer of phospholipids from the endoplasmic reticulum to mitochondria via the mitochondria-endoplasmic reticulum (ER) contact site (MERCS) is essential for maintaining mitochondrial function and integrity. Here, we identified RMDN3/PTPIP51, possessing phosphatidic acid (PA)-transfer activity, as a neighboring protein of the mitochondrial E3 ubiquitin ligase MITOL/MARCH5 by proximity-dependent biotin labeling using APEX2. We found that MITOL interacts with and ubiquitinates RMDN3. Mutational analysis identified lysine residue 89 in RMDN3 as a site of ubiquitination by MITOL. Loss of MITOL or the substitution of lysine 89 to arginine in RMDN3 significantly reduced the PA-binding activity of RMDN3, suggesting that MITOL regulates the transport of PA to mitochondria by activating RMDN3. Our findings imply that ubiquitin signaling regulates phospholipid transport at the MERCS.
  • Shohei Okuda, Mariko Sato, Saho Kato, Shun Nagashima, Ryoko Inatome, Shigeru Yanagi, Toshifumi Fukuda
    The Journal of biological chemistry 297(2) 100986-100986 2021年8月  査読有り
    Radial migration during cortical development is required for formation of the six-layered structure of the mammalian cortex. Defective migration of neurons is linked to several developmental disorders such as autism and schizophrenia. A unique swollen structure called the dilation is formed in migrating neurons and is required for movement of the centrosome and nucleus. However, the detailed molecular mechanism by which this dilation forms is unclear. We report that CAMDI, a gene whose deletion is associated with psychiatric behavior, is degraded by cell division cycle protein 20 (Cdc20)-anaphase-promoting complex/cyclosome (APC/C) cell-cycle machinery after centrosome migration into the dilation in mouse brain development. We also show that CAMDI is restabilized in the dilation until the centrosome enters the dilation, at which point it is once again immediately destabilized. CAMDI degradation is carried out by binding to Cdc20-APC/C via the destruction box degron of CAMDI. CAMDI destruction box mutant overexpression inhibits dilation formation and neuronal cell migration via maintaining the stabilized state of CAMDI. These results indicate that CAMDI is a substrate of the Cdc20-APC/C system and that the oscillatory regulation of CAMDI protein correlates with dilation formation for proper cortical migration.
  • Mikihiro Mitsubori, Keisuke Takeda, Shun Nagashima, Satoshi Ishido, Masaaki Matsuoka, Ryoko Inatome, Shigeru Yanagi
    Biochemical and biophysical research communications 549 67-74 2021年4月16日  査読有り
    Amyloid-β (Aβ) plaques are strongly associated with the development of Alzheimer's disease (AD). However, it remains unclear how morphological differences in Aβ plaques determine the pathogenesis of Aβ. Here, we categorized Aβ plaques into four types based on the macroscopic features of the dense core, and found that the Aβ-plaque subtype containing a larger dense core showed the strongest association with neuritic dystrophy. Astrocytes dominantly accumulated toward these expanded/dense-core-containing Aβ plaques. Previously, we indicated that deletion of the mitochondrial ubiquitin ligase MITOL/MARCH5 triggers mitochondrial impairments and exacerbates cognitive decline in a mouse model with AD-related Aβ pathology. In this study, MITOL deficiency accelerated the formation of expanded/dense-core-containing Aβ plaques, which showed reduced contacts with astrocytes, but not microglia. Our findings suggest that expanded/dense-core-containing Aβ-plaque formation enhanced by the alteration of mitochondrial function robustly contributes to the exacerbation of Aβ neuropathology, at least in part, through the reduced contacts between Aβ plaques and astrocytes.
  • Shun Nagashima, Naoki Ito, Reiki Kobayashi, Isshin Shiiba, Hiroki Shimura, Toshifumi Fukuda, Hideo Hagihara, Tsuyoshi Miyakawa, Ryoko Inatome, Shigeru Yanagi
    The Journal of biological chemistry 100620-100620 2021年3月31日  査読有り
    Mouse models of various neuropsychiatric disorders, such as schizophrenia, often display an immature dentate gyrus, characterized by increased numbers of immature neurons and neuronal progenitors and a dearth of mature neurons. We previously demonstrated that the CRMP5-associated GTPase (CRAG), a short splice variant of Centaurin-γ3/AGAP3, is highly expressed in the dentate gyrus. CRAG promotes cell survival and antioxidant defense by inducing the activation of serum response factors at promyelocytic leukemia protein bodies, which are nuclear stress-responsive domains, during neuronal development. However, the physiological role of CRAG in neuronal development remains unknown. Here, we analyzed the role of CRAG using dorsal forebrain-specific CRAG/Centaurin-γ3 knockout mice. The mice revealed maturational abnormality of the hippocampal granule cells, including increased doublecortin-positive immature neurons and decreased calbindin-positive mature neurons, a typical phenotype of immature dentate gyri. Furthermore, the mice displayed hyperactivity in the open-field test, a common measure of exploratory behavior, suggesting that these mice may serve as a novel model for neuropsychiatric disorder associated with hyperactivity. Thus, we conclude that CRAG is required for the maturation of neurons in the dentate gyrus, raising the possibility that its deficiency might promote the development of psychiatric disorders in humans.

MISC

 3

共同研究・競争的資金等の研究課題

 6