Curriculum Vitaes

Ryoko Inatome

  (稲留 涼子)

Profile Information

Affiliation
Faculty of Science, Department of Life Science, Gakushuin University
Degree
博士(医学)(神戸大学)

Researcher number
90408691
J-GLOBAL ID
201801016289698851
researchmap Member ID
B000344761

Papers

 43
  • Takeshi Tokuyama, Hideki Uosaki, Ayumu Sugiura, Gen Nishitai, Keisuke Takeda, Shun Nagashima, Isshin Shiiba, Naoki Ito, Taku Amo, Satoshi Mohri, Akiyuki Nishimura, Motohiro Nishida, Ayumu Konno, Hirokazu Hirai, Satoshi Ishido, Takahiro Yoshizawa, Takayuki Shindo, Shingo Takada, Shintaro Kinugawa, Ryoko Inatome, Shigeru Yanagi
    iScience, 25(7) 104582-104582, Jul 15, 2022  Peer-reviewed
    Abnormal mitochondrial fragmentation by dynamin-related protein1 (Drp1) is associated with the progression of aging-associated heart diseases, including heart failure and myocardial infarction (MI). Here, we report a protective role of outer mitochondrial membrane (OMM)-localized E3 ubiquitin ligase MITOL/MARCH5 against cardiac senescence and MI, partly through Drp1 clearance by OMM-associated degradation (OMMAD). Persistent Drp1 accumulation in cardiomyocyte-specific MITOL conditional-knockout mice induced mitochondrial fragmentation and dysfunction, including reduced ATP production and increased ROS generation, ultimately leading to myocardial senescence and chronic heart failure. Furthermore, ischemic stress-induced acute downregulation of MITOL, which permitted mitochondrial accumulation of Drp1, resulted in mitochondrial fragmentation. Adeno-associated virus-mediated delivery of the MITOL gene to cardiomyocytes ameliorated cardiac dysfunction induced by MI. Our findings suggest that OMMAD activation by MITOL can be a therapeutic target for aging-associated heart diseases, including heart failure and MI.
  • Naoki Ito, Takara Takahashi, Isshin Shiiba, Shun Nagashima, Ryoko Inatome, Shigeru Yanagi
    Journal of biochemistry, 171(5) 529-541, Dec 29, 2021  Peer-reviewed
    The transfer of phospholipids from the endoplasmic reticulum to mitochondria via the mitochondria-endoplasmic reticulum (ER) contact site (MERCS) is essential for maintaining mitochondrial function and integrity. Here, we identified RMDN3/PTPIP51, possessing phosphatidic acid (PA)-transfer activity, as a neighboring protein of the mitochondrial E3 ubiquitin ligase MITOL/MARCH5 by proximity-dependent biotin labeling using APEX2. We found that MITOL interacts with and ubiquitinates RMDN3. Mutational analysis identified lysine residue 89 in RMDN3 as a site of ubiquitination by MITOL. Loss of MITOL or the substitution of lysine 89 to arginine in RMDN3 significantly reduced the PA-binding activity of RMDN3, suggesting that MITOL regulates the transport of PA to mitochondria by activating RMDN3. Our findings imply that ubiquitin signaling regulates phospholipid transport at the MERCS.
  • Shohei Okuda, Mariko Sato, Saho Kato, Shun Nagashima, Ryoko Inatome, Shigeru Yanagi, Toshifumi Fukuda
    The Journal of biological chemistry, 297(2) 100986-100986, Aug, 2021  Peer-reviewed
    Radial migration during cortical development is required for formation of the six-layered structure of the mammalian cortex. Defective migration of neurons is linked to several developmental disorders such as autism and schizophrenia. A unique swollen structure called the dilation is formed in migrating neurons and is required for movement of the centrosome and nucleus. However, the detailed molecular mechanism by which this dilation forms is unclear. We report that CAMDI, a gene whose deletion is associated with psychiatric behavior, is degraded by cell division cycle protein 20 (Cdc20)-anaphase-promoting complex/cyclosome (APC/C) cell-cycle machinery after centrosome migration into the dilation in mouse brain development. We also show that CAMDI is restabilized in the dilation until the centrosome enters the dilation, at which point it is once again immediately destabilized. CAMDI degradation is carried out by binding to Cdc20-APC/C via the destruction box degron of CAMDI. CAMDI destruction box mutant overexpression inhibits dilation formation and neuronal cell migration via maintaining the stabilized state of CAMDI. These results indicate that CAMDI is a substrate of the Cdc20-APC/C system and that the oscillatory regulation of CAMDI protein correlates with dilation formation for proper cortical migration.
  • Mikihiro Mitsubori, Keisuke Takeda, Shun Nagashima, Satoshi Ishido, Masaaki Matsuoka, Ryoko Inatome, Shigeru Yanagi
    Biochemical and biophysical research communications, 549 67-74, Apr 16, 2021  Peer-reviewed
    Amyloid-β (Aβ) plaques are strongly associated with the development of Alzheimer's disease (AD). However, it remains unclear how morphological differences in Aβ plaques determine the pathogenesis of Aβ. Here, we categorized Aβ plaques into four types based on the macroscopic features of the dense core, and found that the Aβ-plaque subtype containing a larger dense core showed the strongest association with neuritic dystrophy. Astrocytes dominantly accumulated toward these expanded/dense-core-containing Aβ plaques. Previously, we indicated that deletion of the mitochondrial ubiquitin ligase MITOL/MARCH5 triggers mitochondrial impairments and exacerbates cognitive decline in a mouse model with AD-related Aβ pathology. In this study, MITOL deficiency accelerated the formation of expanded/dense-core-containing Aβ plaques, which showed reduced contacts with astrocytes, but not microglia. Our findings suggest that expanded/dense-core-containing Aβ-plaque formation enhanced by the alteration of mitochondrial function robustly contributes to the exacerbation of Aβ neuropathology, at least in part, through the reduced contacts between Aβ plaques and astrocytes.
  • Shun Nagashima, Naoki Ito, Reiki Kobayashi, Isshin Shiiba, Hiroki Shimura, Toshifumi Fukuda, Hideo Hagihara, Tsuyoshi Miyakawa, Ryoko Inatome, Shigeru Yanagi
    The Journal of biological chemistry, 100620-100620, Mar 31, 2021  Peer-reviewed
    Mouse models of various neuropsychiatric disorders, such as schizophrenia, often display an immature dentate gyrus, characterized by increased numbers of immature neurons and neuronal progenitors and a dearth of mature neurons. We previously demonstrated that the CRMP5-associated GTPase (CRAG), a short splice variant of Centaurin-γ3/AGAP3, is highly expressed in the dentate gyrus. CRAG promotes cell survival and antioxidant defense by inducing the activation of serum response factors at promyelocytic leukemia protein bodies, which are nuclear stress-responsive domains, during neuronal development. However, the physiological role of CRAG in neuronal development remains unknown. Here, we analyzed the role of CRAG using dorsal forebrain-specific CRAG/Centaurin-γ3 knockout mice. The mice revealed maturational abnormality of the hippocampal granule cells, including increased doublecortin-positive immature neurons and decreased calbindin-positive mature neurons, a typical phenotype of immature dentate gyri. Furthermore, the mice displayed hyperactivity in the open-field test, a common measure of exploratory behavior, suggesting that these mice may serve as a novel model for neuropsychiatric disorder associated with hyperactivity. Thus, we conclude that CRAG is required for the maturation of neurons in the dentate gyrus, raising the possibility that its deficiency might promote the development of psychiatric disorders in humans.
  • Isshin Shiiba, Keisuke Takeda, Shun Nagashima, Naoki Ito, Takeshi Tokuyama, Shun-Ichi Yamashita, Tomotake Kanki, Toru Komatsu, Yasuteru Urano, Yuuta Fujikawa, Ryoko Inatome, Shigeru Yanagi
    EMBO reports, 22(3) e49097, Mar 3, 2021  Peer-reviewed
    Parkin promotes cell survival by removing damaged mitochondria via mitophagy. However, although some studies have suggested that Parkin induces cell death, the regulatory mechanism underlying the dual role of Parkin remains unknown. Herein, we report that mitochondrial ubiquitin ligase (MITOL/MARCH5) regulates Parkin-mediated cell death through the FKBP38-dependent dynamic translocation from the mitochondria to the ER during mitophagy. Mechanistically, MITOL mediates ubiquitination of Parkin at lysine 220 residue, which promotes its proteasomal degradation, and thereby fine-tunes mitophagy by controlling the quantity of Parkin. Deletion of MITOL leads to accumulation of the phosphorylated active form of Parkin in the ER, resulting in FKBP38 degradation and enhanced cell death. Thus, we have shown that MITOL blocks Parkin-induced cell death, at least partially, by protecting FKBP38 from Parkin. Our findings unveil the regulation of the dual function of Parkin and provide a novel perspective on the pathogenesis of PD.
  • Keisuke Takeda, Aoi Uda, Mikihiro Mitsubori, Shun Nagashima, Hiroko Iwasaki, Naoki Ito, Isshin Shiiba, Satoshi Ishido, Masaaki Matsuoka, Ryoko Inatome, Shigeru Yanagi
    Communications biology, 4(1) 192-192, Feb 12, 2021  Peer-reviewed
    Mitochondrial pathophysiology is implicated in the development of Alzheimer's disease (AD). An integrative database of gene dysregulation suggests that the mitochondrial ubiquitin ligase MITOL/MARCH5, a fine-tuner of mitochondrial dynamics and functions, is downregulated in patients with AD. Here, we report that the perturbation of mitochondrial dynamics by MITOL deletion triggers mitochondrial impairments and exacerbates cognitive decline in a mouse model with AD-related Aβ pathology. Notably, MITOL deletion in the brain enhanced the seeding effect of Aβ fibrils, but not the spontaneous formation of Aβ fibrils and plaques, leading to excessive secondary generation of toxic and dispersible Aβ oligomers. Consistent with this, MITOL-deficient mice with Aβ etiology exhibited worsening cognitive decline depending on Aβ oligomers rather than Aβ plaques themselves. Our findings suggest that alteration in mitochondrial morphology might be a key factor in AD due to directing the production of Aβ form, oligomers or plaques, responsible for disease development.
  • Keigo Matsuno, Shun Nagashima, Isshin Shiiba, Keito Taniwaka, Keisuke Takeda, Takeshi Tokuyama, Naoki Ito, Nobuko Matsushita, Toshifumi Fukuda, Satoshi Ishido, Ryoko Inatome, Shigeru Yanagi
    Journal of biochemistry, 168(3) 305-312, Apr 17, 2020  Peer-reviewed
    In mitochondrial disorders, short stature and growth failure are common symptoms, but their underlying mechanism remains unknown. In this study, we examined the cause of growth failure of mice induced by nestin promoter-driven knockout of the mitochondrial ubiquitin ligase MITOL (MARCH5), a key regulator of mitochondrial function. MITOL-knockout mice have congenital hypoplasia of the anterior pituitary caused by decreased expression of pituitary transcript factor 1 (Pit1). Consistently, both mRNA levels of growth hormone (GH) and prolactin levels were markedly decreased in the anterior pituitary of mutant mice. Growth failure of mutant mice was partly rescued by hypodermic injection of recombinant GH. To clarify whether this abnormality was induced by the primary effect of MITOL knockdown in the anterior pituitary or a secondary effect of other lesions, we performed lentiviral-mediated knockdown of MITOL on cultured rat pituitary GH3 cells, which secrete GH. GH production was severely compromised in MITOL-knockdown GH3 cells. In conclusion, MITOL plays a critical role in the development of the anterior pituitary; therefore, mice with MITOL dysfunction exhibited pituitary dwarfism caused by anterior pituitary hypoplasia. Our findings suggest that mitochondrial dysfunction is commonly involved in the unknown pathogenesis of pituitary dwarfism.
  • Takeshi Tokuyama, Asei Hirai, Isshin Shiiba, Naoki Ito, Keigo Matsuno, Keisuke Takeda, Kanata Saito, Koki Mii, Nobuko Matsushita, Toshifumi Fukuda, Ryoko Inatome, Shigeru Yanagi
    Biomolecules, 10(3), Mar 13, 2020  Peer-reviewed
    Mitochondria are highly dynamic organelles that constantly fuse, divide, and move, and their function is regulated and maintained by their morphologic changes. Mitochondrial disease (MD) comprises a group of disorders involving mitochondrial dysfunction. However, it is not clear whether changes in mitochondrial morphology are related to MD. In this study, we examined mitochondrial morphology in fibroblasts from patients with MD (mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) and Leigh syndrome). We observed that MD fibroblasts exhibited significant mitochondrial fragmentation by upregulation of Drp1, which is responsible for mitochondrial fission. Interestingly, the inhibition of mitochondrial fragmentation by Drp1 knockdown enhanced cellular toxicity and led to cell death in MD fibroblasts. These results suggest that mitochondrial fission plays a critical role in the attenuation of mitochondrial damage in MD fibroblasts.
  • Shun Nagashima, Keisuke Takeda, Isshin Shiiba, Mizuho Higashi, Toshifumi Fukuda, Takeshi Tokuyama, Nobuko Matsushita, Seiichi Nagano, Toshiyuki Araki, Mari Kaneko, Go Shioi, Ryoko Inatome, Shigeru Yanagi
    Scientific reports, 9(1) 20107-20107, Dec 27, 2019  Peer-reviewed
    CRMP-5-associated GTPase (CRAG), a short splicing variant of centaurin-γ3/AGAP3, is predominantly expressed in the developing brain. We previously demonstrated that CRAG, but not centaurin-γ3, translocates to the nucleus and activates the serum response factor (SRF)-c-Fos pathway in cultured neuronal cells. However, the physiological relevance of CRAG in vivo is unknown. Here, we found that CRAG/centaurin-γ3-knockout mice showed intensively suppressed kainic acid-induced c-fos expression in the hippocampus. Analyses of molecular mechanisms underlying CRAG-mediated SRF activation revealed that CRAG has an essential role in GTPase activity, interacts with ELK1 (a co-activator of SRF), and activates SRF in an ELK1-dependent manner. Furthermore, CRAG and ELK1 interact with promyelocytic leukaemia bodies through SUMO-interacting motifs, which is required for SRF activation. These results suggest that CRAG plays a critical role in ELK1-dependent SRF-c-fos activation at promyelocytic leukaemia bodies in the developing brain.
  • Nagashima S, Takeda K, Shiiba I, Higashi M, Fukuda T, Tokuyama T, Matsushima N, Nagano S, Araki T, Kaneko M, Shioi G, Inatome R, Yanagi S
    Scientific Reports, 9(1) 20107, Dec, 2019  Peer-reviewed
    Abstract CRMP-5-associated GTPase (CRAG), a short splicing variant of centaurin-γ3/AGAP3, is predominantly expressed in the developing brain. We previously demonstrated that CRAG, but not centaurin-γ3, translocates to the nucleus and activates the serum response factor (SRF)-c-Fos pathway in cultured neuronal cells. However, the physiological relevance of CRAG in vivo is unknown. Here, we found that CRAG/centaurin-γ3–knockout mice showed intensively suppressed kainic acid-induced c-fos expression in the hippocampus. Analyses of molecular mechanisms underlying CRAG-mediated SRF activation revealed that CRAG has an essential role in GTPase activity, interacts with ELK1 (a co-activator of SRF), and activates SRF in an ELK1-dependent manner. Furthermore, CRAG and ELK1 interact with promyelocytic leukaemia bodies through SUMO-interacting motifs, which is required for SRF activation. These results suggest that CRAG plays a critical role in ELK1-dependent SRF-c-fos activation at promyelocytic leukaemia bodies in the developing brain.
  • Keisuke Takeda, Shun Nagashima, Isshin Shiiba, Aoi Uda, Takeshi Tokuyama, Naoki Ito, Toshifumi Fukuda, Nobuko Matsushita, Satoshi Ishido, Takao Iwawaki, Takashi Uehara, Ryoko Inatome, Shigeru Yanagi
    The EMBO journal, 38(15) e100999, Aug 1, 2019  Peer-reviewed
    Unresolved endoplasmic reticulum (ER) stress shifts the unfolded protein response signaling from cell survival to cell death, although the switching mechanism remains unclear. Here, we report that mitochondrial ubiquitin ligase (MITOL/MARCH5) inhibits ER stress-induced apoptosis through ubiquitylation of IRE1α at the mitochondria-associated ER membrane (MAM). MITOL promotes K63-linked chain ubiquitination of IRE1α at lysine 481 (K481), thereby preventing hyper-oligomerization of IRE1α and regulated IRE1α-dependent decay (RIDD). Therefore, under ER stress, MITOL depletion or the IRE1α mutant (K481R) allows for IRE1α hyper-oligomerization and enhances RIDD activity, resulting in apoptosis. Similarly, in the spinal cord of MITOL-deficient mice, ER stress enhances RIDD activity and subsequent apoptosis. Notably, unresolved ER stress attenuates IRE1α ubiquitylation, suggesting that this directs the apoptotic switch of IRE1α signaling. Our findings suggest that mitochondria regulate cell fate under ER stress through IRE1α ubiquitylation by MITOL at the MAM.
  • Nagashima S, Takeda K, Ohno N, Ishido S, Aoki M, Saitoh Y, Takada T, Tokuyama T, Sugiura A, Fukuda T, Matsushita N, Inatome R, Yanagi S
    Life science alliance, 2(4), Aug, 2019  Peer-reviewed
    Mitochondrial abnormalities are associated with developmental disorders, although a causal relationship remains largely unknown. Here, we report that increased oxidative stress in neurons by deletion of mitochondrial ubiquitin ligase MITOL causes a potential neuroinflammation including aberrant astrogliosis and microglial activation, indicating that mitochondrial abnormalities might confer a risk for inflammatory diseases in brain such as psychiatric disorders. A role of MITOL in both mitochondrial dynamics and ER-mitochondria tethering prompted us to characterize three-dimensional structures of mitochondria in vivo. In MITOL-deficient neurons, we observed a significant reduction in the ER-mitochondria contact sites, which might lead to perturbation of phospholipids transfer, consequently reduce cardiolipin biogenesis. We also found that branched large mitochondria disappeared by deletion of MITOL. These morphological abnormalities of mitochondria resulted in enhanced oxidative stress in brain, which led to astrogliosis and microglial activation partly causing abnormal behavior. In conclusion, the reduced ER-mitochondria tethering and excessive mitochondrial fission may trigger neuroinflammation through oxidative stress.
  • Takeda K, Nagashima S, Shiiba I, Uda A, Tokuyama T, Ito N, Fukuda T, Matsushita N, Ishido S, Iwawaki T, Uehara T, Inatome R, Yanagi S
    The EMBO journal, 38(15), Jun, 2019  Peer-reviewed
  • Toshifumi Fukuda, Shun Nagashima, Ryoko Inatome, Shigeru Yanagi
    PloS one, 14(11) e0224967, 2019  Peer-reviewed
    Little is known about the molecular mechanisms of cognitive deficits in psychiatric disorders. CAMDI is a psychiatric disorder-related factor, the deficiency of which in mice results in delayed neuronal migration and psychiatrically abnormal behaviors. Here, we found that CAMDI-deficient mice exhibited impaired recognition memory and spatial reference memory. Knockdown of CAMDI in hippocampal neurons increased the amount of internalized alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor (AMPAR) and attenuated the chemical long-term potentiation (LTP)-dependent cell surface expression of AMPAR. KIBRA was identified as a novel CAMDI-binding protein that retains AMPAR in the cytosol after internalization. KIBRA inhibited CAMDI-dependent Rab11 activation, thereby attenuating AMPAR cell surface expression. These results suggest that CAMDI regulates AMPAR cell surface expression during LTP. CAMDI dysfunction may partly explain the mechanism underlying cognitive deficits in psychiatric diseases.
  • Toshifumi Fukuda, Shun Nagashima, Takaya Abe, Hiroshi Kiyonari, Ryoko Inatome, Shigeru Yanagi
    EMBO REPORTS, 17(12) 1785-1798, Dec, 2016  Peer-reviewed
  • Nobuko Matsushita, Midori Suzuki, Emi Ikebe, Shun Nagashima, Ryoko Inatome, Kenichi Asano, Masato Tanaka, Masayuki Matsushita, Eisaku Kondo, Hidekatsu Iha, Shigeru Yanagi
    SCIENTIFIC REPORTS, 6 31266, Aug, 2016  Peer-reviewed
  • Shun Nagashima, Takeshi Tokuyama, Ryo Yonashiro, Ryoko Inatome, Shigeru Yanagi
    JOURNAL OF BIOCHEMISTRY, 155(5) 273-279, May, 2014  Peer-reviewed
  • Ayumu Sugiura, Shun Nagashima, Takeshi Tokuyama, Taku Amo, Yohei Matsuki, Satoshi Ishido, Yoshihisa Kudo, Heidi M. McBride, Toshifumi Fukuda, Nobuko Matsushita, Ryoko Inatome, Shigeru Yanagi
    MOLECULAR CELL, 51(1) 20-34, Jul, 2013  Peer-reviewed
  • Ryo Yonashiro, Yuya Kimijima, Takuya Shimura, Kohei Kawaguchi, Toshifumi Fukuda, Ryoko Inatome, Shigeru Yanagi
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 109(7) 2382-2387, Feb, 2012  Peer-reviewed
  • Shun Nagashima, Toshifumi Fukuda, Yuka Kubota, Ayumu Sugiura, Mitsuyoshi Nakao, Ryoko Inatome, Shigeru Yanagi
    JOURNAL OF BIOLOGICAL CHEMISTRY, 286(39) 33879-33889, Sep, 2011  Peer-reviewed
  • Nobuko Matsushita, Ryo Yonashiro, Yoshinobu Ogata, Ayumu Sugiura, Shun Nagashima, Toshifumi Fukuda, Ryoko Inatome, Shigeru Yanagi
    GENES TO CELLS, 16(2) 190-202, Feb, 2011  Peer-reviewed
  • Ayumu Sugiura, Ryo Yonashiro, Toshifumi Fukuda, Nobuko Matsushita, Shun Nagashima, Ryoko Inatome, Shigeru Yanagi
    MITOCHONDRION, 11(1) 139-146, Jan, 2011  Peer-reviewed
  • Toshifumi Fukuda, Satoko Sugita, Ryoko Inatome, Shigeru Yanagi
    JOURNAL OF BIOLOGICAL CHEMISTRY, 285(52) 40554-40561, Dec, 2010  Peer-reviewed
  • Ryo Yonashiro, Ayumu Sugiura, Misako Miyachi, Toshifumi Fukuda, Nobuko Matsushita, Ryoko Inatome, Yoshinobu Ogata, Takehiro Suzuki, Naoshi Dohmae, Shigeru Yanagi
    MOLECULAR BIOLOGY OF THE CELL, 20(21) 4524-4530, Nov, 2009  Peer-reviewed
  • Ryo Yonashiro, Satoshi Ishido, Shinkou Kyo, Toshifumi Fukuda, Eiji Goto, Yohei Matsuki, Mari Ohmura-Hoshino, Kiyonao Sada, Hak Hotta, Hirohei Yamamura, Ryoko Inatome, Shigeru Yanagi
    EMBO JOURNAL, 25(15) 3618-3626, Aug, 2006  Peer-reviewed
  • QY Qin, R Inatome, A Hotta, M Kojima, H Yamamura, H Hirai, T Yoshizawa, H Tanaka, K Fukami, S Yanagi
    JOURNAL OF CELL BIOLOGY, 172(4) 497-504, Feb, 2006  Peer-reviewed
  • A Hotta, R Inatome, J Yuasa-Kawada, Q Qin, H Yamamura, S Yanagi
    MOLECULAR BIOLOGY OF THE CELL, 16(1) 32-39, Jan, 2005  Peer-reviewed
  • S Takahashi, R Inatome, A Hotta, Q Qingyu, R Hackenmiller, MC Simon, H Yamamura, S Yanagi
    JOURNAL OF BIOLOGICAL CHEMISTRY, 278(49) 49129-49133, Dec, 2003  Peer-reviewed
  • S Takahashi, R Inatome, H Yamamura, S Yanagi
    GENES TO CELLS, 8(2) 81-93, Feb, 2003  Peer-reviewed
  • N Mitsui, R Inatome, S Takahashi, Y Goshima, H Yamamura, S Yanagi
    EMBO JOURNAL, 21(13) 3274-3285, Jul, 2002  Peer-reviewed
  • S Yanagi, R Inatome, JY Ding, H Kitaguchi, VLJ Tybulewicz, H Yamamura
    BLOOD, 98(9) 2869-2871, Nov, 2001  Peer-reviewed
  • S Yanagi, R Inatome, T Takano, H Yamamura
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 288(3) 495-498, Nov, 2001  Peer-reviewed
  • R Inatome, S Yanagi, T Takano, H Yamamura
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 286(1) 195-199, Aug, 2001  Peer-reviewed
  • T Yamada, S Fujieda, S Yanagi, H Yamamura, R Inatome, H Yamamoto, H Igawa, H Saito
    JOURNAL OF IMMUNOLOGY, 167(1) 283-288, Jul, 2001  Peer-reviewed
  • T Hitomi, S Yanagi, R Inatome, J Ding, T Takano, H Yamamura
    GENES TO CELLS, 6(5) 475-485, May, 2001  Peer-reviewed
  • T Tsujimura, S Yanagi, R Inatome, T Takano, Ishihara, I, N Mitsui, S Takahashi, H Yamamura
    FEBS LETTERS, 489(2-3) 129-133, Feb, 2001  Peer-reviewed
  • T Yamada, S Fujieda, S Yanagi, H Yamamura, R Inatome, H Sunaga, H Saito
    JOURNAL OF IMMUNOLOGY, 166(1) 538-543, Jan, 2001  Peer-reviewed
  • R Inatome, T Tsujimura, T Hitomi, N Mitsui, P Hermann, S Kuroda, H Yamamura, S Yanagi
    JOURNAL OF BIOLOGICAL CHEMISTRY, 275(35) 27291-27302, Sep, 2000  Peer-reviewed
  • S Tsuchida, S Yanagi, R Inatome, JY Ding, P Hermann, T Tsujimura, N Matsui, H Yamamura
    JOURNAL OF BIOCHEMISTRY, 127(2) 321-327, Feb, 2000  Peer-reviewed
  • T Hitomi, S Yanagi, R Inatome, H Yamamura
    FEBS LETTERS, 445(2-3) 371-374, Feb, 1999  Peer-reviewed
  • H Yoneya, S Yanagi, R Inatome, JY Ding, T Hitomi, M Amatsu, H Yamamura
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 245(1) 140-143, Apr, 1998  Peer-reviewed
  • XY Wang, S Yanagi, C Yang, R Inatome, H Yamamura
    JOURNAL OF BIOCHEMISTRY, 121(2) 325-330, Feb, 1997  Peer-reviewed

Misc.

 3

Research Projects

 6