学習院大学研究者情報
研究者情報
Researcher Information
 

日本語 | English
 
トップページ > 理学部> 数学科 

理学部 数学科

研究者リスト >> 中村 周
 

中村 周

 
アバター
研究者氏名中村 周
 
ナカムラ シュウ
URLhttp://pc1.math.gakushuin.ac.jp/~shu/
所属学習院大学
部署理学部数学科
職名教授
学位理学博士(東京大学)
科研費研究者番号50183520

研究キーワード

 
超局所解析 , 半古典解析 , 散乱理論 , シュレディンガー方程式

研究分野

 
  • 自然科学一般 / 基礎解析学 / 関数解析、関数方程式

論文

 
Shu Nakamura
JOURNAL OF FUNCTIONAL ANALYSIS   256(4) 1299-1309   2009年2月   [査読有り]
We consider solutions to Schrodinger equation on R(d) with variable coefficients. Let H be the Schrodinger operator and let u(t) = e(-itH)u(0) be the solution to the Schrodinger equation with the initial condition u(0) is an element of L(2)(R(d))....
Shikuan Mao, Shu Nakamura
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS   34(5) 506-519   2009年   [査読有り]
We consider Schrodinger equations with variable coefficients and the harmonic potential. We suppose the perturbation is short-range type in the sense of [7]. We characterize the wave front set of the solutions to the equation in terms of the class...
Shu Nakamura
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN   61(1) 177-211   2009年1月   [査読有り]
We consider Schrodinger equations with variable coefficients, which are long-range type perturbations of the flat Laplacian on R-n. We characterize the wave front set of solutions to Schrodinger equations in terms of the initial state. Then it is ...
Martinez Andre, Nakamura Shu, Sordoni Vania
COMPTES RENDUS MATHEMATIQUE   346(15-16) 849-852   2008年8月   [査読有り]
Andre Martinez, Shu Nakamura, Vania Sordoni
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS   59(9) 1330-1351   2006年9月   [査読有り]
We study the microlocal analytic singularity of solutions to the Schrodinger equation with analytic coefficients. Using microlocal weight estimates developed for estimating phase space tunneling, we prove microlocal smoothing estimates that genera...

MISC

 
Shu Nakamura
   2018年4月
We consider scattering matrix for Schr\&quot;odinger-type operators on Tex with<br />
perturbation Tex as Tex. We show that<br />
the scattering matrix (with time-independent modifiers) is a pseudodifferent...
Shu Nakamura
   2018年4月
We show that the scattering matrix for a class of Schr\&quot;odinger-type<br />
operators with long-range perturbations is a Fourier integral operator with the<br />
phase function which is the generating function of the modified classical<br />
s...
Jussi Behrndt, Fritz Gesztesy, Shu Nakamura
   2017年10月
For the pair Tex of self-adjoint<br />
Schr\&quot;{o}dinger operators in Tex a spectral shift function is<br />
determined in an explicit form with the help of (energy parameter dependent...
Jussi Behrndt, Fritz Gesztesy, Shu Nakamura
   2016年9月
The spectral shift function of a pair of self-adjoint operators is expressed<br />
via an abstract operator valued Titchmarsh--Weyl Tex-function. This general<br />
result is applied to different self-adjoint realizations of second-order<br />
ell...
Shu Nakamura
   2016年2月
Let Tex be a Schr\&quot;odinger type operator with long-range perturbation. We<br />
study the wave front set of the distribution kernel of Tex, where Tex is in the absolutely continous spectrumof Tex.The<br />
res...