学習院大学研究者情報
研究者情報
Researcher Information
 

日本語 | English
 
トップページ > 理学部> 数学科 

理学部 数学科

研究者リスト >> 中村 周
 

中村 周

 
アバター
研究者氏名中村 周
 
ナカムラ シュウ
URLhttp://pc1.math.gakushuin.ac.jp/~shu/
所属学習院大学
部署理学部数学科
職名教授
学位理学博士(東京大学)
科研費研究者番号50183520

研究キーワード

 
超局所解析 , 半古典解析 , 散乱理論 , シュレディンガー方程式

研究分野

 
  • 自然科学一般 / 基礎解析学 / 関数解析、関数方程式

論文

 
M. Kaminaga, M. Krishna, S. Nakamura
JOURNAL OF STATISTICAL PHYSICS   149(3) 496-504   2012年11月   [査読有り]
We consider the d-dimensional Anderson model, and we prove the density of states is locally analytic if the single site potential distribution is locally analytic and the disorder is large. We employ the random walk expansion of resolvents and a s...
Frederic Klopp, Michael Loss, Shu Nakamura, Guenter Stolz
DUKE MATHEMATICAL JOURNAL   161(4) 587-621   2012年3月   [査読有り]
We prove spectral and dynamical localization for the multidimensional random displacement model near the bottom of its spectrum by showing that the approach through multiscale analysis is applicable. In particular, we show that a previously known ...
Klopp, F, Loss, M, Nakamura, S, Stolz, G
Operator Theory: Advances and Applications   224 183-219   2012年   [査読有り][招待有り]
Kenichi Ito, Shu Nakamura
ANNALES DE L INSTITUT FOURIER   62(3) 1091-1121   2012年   [査読有り]
We consider Schrodinger operators H on R-n with variable coefficients. Let H-0 = -1/2 Delta be the free Schrodinger operator and we suppose H is a "short-range" perturbation of H-0. Then, under the nontrapping condition, we show that the time evol...
Kenichi Ito, Shu Nakamura
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES   81 774-792   2010年6月   [査読有り]
We construct a time-dependent scattering theory for Schrodinger operators on a manifold M with asymptotically conic structure. We use the two-space scattering theory formalism, and a reference operator on a space of the form R x partial derivative...

MISC

 
Shu Nakamura
   2018年4月
We consider scattering matrix for Schr\&quot;odinger-type operators on Tex with<br />
perturbation Tex as Tex. We show that<br />
the scattering matrix (with time-independent modifiers) is a pseudodifferent...
Shu Nakamura
   2018年4月
We show that the scattering matrix for a class of Schr\&quot;odinger-type<br />
operators with long-range perturbations is a Fourier integral operator with the<br />
phase function which is the generating function of the modified classical<br />
s...
Jussi Behrndt, Fritz Gesztesy, Shu Nakamura
   2017年10月
For the pair Tex of self-adjoint<br />
Schr\&quot;{o}dinger operators in Tex a spectral shift function is<br />
determined in an explicit form with the help of (energy parameter dependent...
Jussi Behrndt, Fritz Gesztesy, Shu Nakamura
   2016年9月
The spectral shift function of a pair of self-adjoint operators is expressed<br />
via an abstract operator valued Titchmarsh--Weyl Tex-function. This general<br />
result is applied to different self-adjoint realizations of second-order<br />
ell...
Shu Nakamura
   2016年2月
Let Tex be a Schr\&quot;odinger type operator with long-range perturbation. We<br />
study the wave front set of the distribution kernel of Tex, where Tex is in the absolutely continous spectrumof Tex.The<br />
res...