学習院大学研究者情報
研究者情報
Researcher Information
 

日本語 | English
 
トップページ > 理学部> 数学科 

理学部 数学科

研究者リスト >> 中村 周
 

中村 周

 
アバター
研究者氏名中村 周
 
ナカムラ シュウ
URLhttp://pc1.math.gakushuin.ac.jp/~shu/
所属学習院大学
部署理学部数学科
職名教授
学位理学博士(東京大学)
科研費研究者番号50183520

研究キーワード

 
超局所解析 , 半古典解析 , 散乱理論 , シュレディンガー方程式

研究分野

 
  • 自然科学一般 / 基礎解析学 / 関数解析、関数方程式

論文

 
Behrndt Jussi, Gesztesy Fritz, Nakamura Shu
MATHEMATISCHE ANNALEN   371(3-4) 1255-1300   2018年8月   [査読有り]
Takuro Matsuta, Tohru Koma, Shu Nakamura
ANNALES HENRI POINCARE   18(2) 519-528   2017年2月   [査読有り]
We improve the Lieb-Robinson bound for a wide class of quantum many-body systems with long-range interactions decaying by power law. As an application, we show that the group velocity of information propagation grows by power law in time for such ...
中村 周
J. Math. Sci. Univ. Tokyo   24 239-257   2017年   [査読有り]
Shu Nakamura
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS   41(6) 894-912   2016年   [査読有り]
We consider the scattering theory for a pair of operators H-0 and H=H-0+V on L-2(M, m), where M is a Riemannian manifold, H-0 is a multiplication operator on M, and V is a pseudodifferential operator of order - , >1. We show that a time-depende...
Shu Nakamura
JOURNAL OF MATHEMATICAL PHYSICS   55(11)    2014年11月   [査読有り]
We consider the scattering theory for discrete Schrodinger operators on Z(d) with long-range potentials. We prove the existence of modified wave operators constructed in terms of solutions of a Hamilton-Jacobi equation on the torus T-d. (C) 2014 A...

MISC

 
Frédéric Klopp, Shu Nakamura
   2009年3月
We study Lifshitz tails for random Schr\&quot;odinger operators where the random<br />
potential is alloy type in the sense that the single site potentials are<br />
independent, identically distributed, but they may have various function forms.<b...
Shikuan Mao, Shu Nakamura
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS   34(5) 506-519   2009年
We consider Schrodinger equations with variable coefficients and the harmonic potential. We suppose the perturbation is short-range type in the sense of [7]. We characterize the wave front set of the solutions to the equation in terms of the class...
Andre' Martinez, Shu Nakamura, Vania Sordoni
   2008年7月
This paper is a continuation of a paper by the authors: arXiv:0706.0415,<br />
where short range perturbations of the flat Euclidian metric where considered.<br />
Here, we generalize the results of the paper to long-range perturbations (in<br />
...
Kenichi Ito, Shu Nakamura
   2007年11月
In this paper we study microlocal singularities of solutions to Schrodinger<br />
equations on scattering manifolds, i.e., noncompact Riemannian manifolds with<br />
asymptotically conic ends. We characterize the wave front set of the solutions<br...
Andre' Martinez, Shu Nakamura, Vania Sordoni
   2007年6月
This paper is a continuation of a previous paper by the same authors, where<br />
an analytic smoothing effect was proved for long-range type perturbations of<br />
the Laplacian Tex on Tex. In this paper, we consider short-range type<br />
...