学習院大学研究者情報
研究者情報
Researcher Information
 

日本語 | English
 
トップページ > 理学部> 数学科 

理学部 数学科

研究者リスト >> 中村 周
 

中村 周

 
アバター
研究者氏名中村 周
 
ナカムラ シュウ
URLhttp://pc1.math.gakushuin.ac.jp/~shu/
所属学習院大学
部署理学部数学科
職名教授
学位理学博士(東京大学)
科研費研究者番号50183520

研究キーワード

 
超局所解析 , 半古典解析 , 散乱理論 , シュレディンガー方程式

研究分野

 
  • 自然科学一般 / 基礎解析学 / 関数解析、関数方程式

論文

 
Behrndt Jussi, Gesztesy Fritz, Nakamura Shu
MATHEMATISCHE ANNALEN   371(3-4) 1255-1300   2018年8月   [査読有り]
Takuro Matsuta, Tohru Koma, Shu Nakamura
ANNALES HENRI POINCARE   18(2) 519-528   2017年2月   [査読有り]
We improve the Lieb-Robinson bound for a wide class of quantum many-body systems with long-range interactions decaying by power law. As an application, we show that the group velocity of information propagation grows by power law in time for such ...
中村 周
J. Math. Sci. Univ. Tokyo   24 239-257   2017年   [査読有り]
Shu Nakamura
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS   41(6) 894-912   2016年   [査読有り]
We consider the scattering theory for a pair of operators H-0 and H=H-0+V on L-2(M, m), where M is a Riemannian manifold, H-0 is a multiplication operator on M, and V is a pseudodifferential operator of order - , >1. We show that a time-depende...
Shu Nakamura
JOURNAL OF MATHEMATICAL PHYSICS   55(11)    2014年11月   [査読有り]
We consider the scattering theory for discrete Schrodinger operators on Z(d) with long-range potentials. We prove the existence of modified wave operators constructed in terms of solutions of a Hamilton-Jacobi equation on the torus T-d. (C) 2014 A...

MISC

 
Mahito Kohmoto, Tohru Koma, Shu Nakamura
   2011年11月
We study the relationship between the spectral shift function and the excess<br />
charge in potential scattering theory. Although these quantities are closely<br />
related to each other, they have been often formulated in different settings so<b...
Frédéric Klopp, Michael Loss, Shu Nakamura, Günter Stolz
Oper. Theory Adv. Appl., 224 (2012), 183-219      2011年7月
We give a detailed survey of results obtained in the most recent half decade<br />
which led to a deeper understanding of the random displacement model, a model<br />
of a random Schr\&quot;odinger operator which describes the quantum mechanics of...
Kenichi Ito, Shu Nakamura
   2011年2月
Let Tex be a scattering manifold, i.e., a Riemannian manifold with<br />
asymptotically conic structure, and let Tex be a Schr\&quot;odinger operator on Tex.<br />
We can construct a natural time-dependent scattering theory for Tex with a<br />
su...
Michael Loss, Guenter Stolz
MATHEMATICAL RESULTS IN QUANTUM PHYSICS   169-175   2011年
This is a summary of recent work, jointly with J. Baker, F. Klopp and S. Nakamura, concerning the random displacement model resulting in a proof of localization near the edge of the deterministic spectrum. Localization is meant in both senses, pur...
Kenichi Ito, Shu Nakamura
   2009年12月
We consider Schr\&quot;odinger operators Tex on Tex with variable coefficients.<br />
Let Tex be the free Schr\&quot;odinger operator and we suppose<br />
Tex is a &quot;short-range&quot; perturbation of Tex. Then, under th...