学習院大学研究者情報
研究者情報
Researcher Information
 

日本語 | English
 
トップページ > 理学部> 数学科 

理学部 数学科

研究者リスト >> 中村 周
 

中村 周

 
アバター
研究者氏名中村 周
 
ナカムラ シュウ
URLhttp://pc1.math.gakushuin.ac.jp/~shu/
所属学習院大学
部署理学部数学科
職名教授
学位理学博士(東京大学)
科研費研究者番号50183520

研究キーワード

 
超局所解析 , 半古典解析 , 散乱理論 , シュレディンガー方程式

研究分野

 
  • 自然科学一般 / 基礎解析学 / 関数解析、関数方程式

論文

 
Behrndt Jussi, Gesztesy Fritz, Nakamura Shu
MATHEMATISCHE ANNALEN   371(3-4) 1255-1300   2018年8月   [査読有り]
Takuro Matsuta, Tohru Koma, Shu Nakamura
ANNALES HENRI POINCARE   18(2) 519-528   2017年2月   [査読有り]
We improve the Lieb-Robinson bound for a wide class of quantum many-body systems with long-range interactions decaying by power law. As an application, we show that the group velocity of information propagation grows by power law in time for such ...
中村 周
J. Math. Sci. Univ. Tokyo   24 239-257   2017年   [査読有り]
Shu Nakamura
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS   41(6) 894-912   2016年   [査読有り]
We consider the scattering theory for a pair of operators H-0 and H=H-0+V on L-2(M, m), where M is a Riemannian manifold, H-0 is a multiplication operator on M, and V is a pseudodifferential operator of order - , >1. We show that a time-depende...
Shu Nakamura
JOURNAL OF MATHEMATICAL PHYSICS   55(11)    2014年11月   [査読有り]
We consider the scattering theory for discrete Schrodinger operators on Z(d) with long-range potentials. We prove the existence of modified wave operators constructed in terms of solutions of a Hamilton-Jacobi equation on the torus T-d. (C) 2014 A...

MISC

 
Shu Nakamura
   2014年7月
We consider scattering theory for a pair of operators Tex and Tex on<br />
Tex, where Tex is a Riemannian manifold, Tex is a multiplication<br />
operator on Tex and Tex is a pseudodifferential operator of order Tex,<br />
$\mu...
Shu Nakamura
   2014年3月
We consider the scattering theory for discrete Schr\&quot;odinger operators on<br />
Tex with long-range potentials. We prove the existence of modified wave<br />
operators constructed in terms of solutions of a Hamilton-Jacobi equation on<br />...
Kazuki Horie, Shu Nakamura
50(3) 477-496   2014年
In a previous paper by the second author, we discussed a characterization of<br />
the microlocal singularities for solutions to Schr\&quot;odinger equations with long<br />
range type perturbations, using solutions to a Hamilton-Jacobi equation. ...
Shu Nakamura
   2013年5月
On this short note, we apply the Mourre theory of the limiting absorption<br />
with {\it difference} type conditions on the potential, instead of conditions<br />
on the derivatives. In order that we modify the definition of the conjugate<br />
o...
Shu Nakamura, Alexander Pushnitski
   2012年2月
The object of study in this paper is the on-shell scattering matrix Tex of<br />
the Schr\&quot;odinger operator with the potential satisfying assumptions typical in<br />
the theory of shape resonances. We study the spectrum of Tex in the<b...