学習院大学研究者情報
研究者情報
Researcher Information
 
言語の選択:
トップページ > 理学部> 数学科 

理学部 数学科

研究者リスト >> 中村 周
 

中村 周

 
アバター
研究者氏名中村 周
 
ナカムラ シュウ
URLhttp://pc1.math.gakushuin.ac.jp/~shu/
所属学習院大学
部署理学部数学科
職名教授
学位理学博士(東京大学)
科研費研究者番号50183520
J-Global ID201801011273360999

研究キーワード

 
超局所解析 ,半古典解析 ,散乱理論 ,シュレディンガー方程式

研究分野

 
  • 自然科学一般 / 基礎解析学 / 関数解析、関数方程式

論文

 
 
Shu Nakamura   Kouichi Taira   
4 1035-1059   2021年9月   [査読有り]
 
Shu Nakamura   Yukihide Tadano   
Journal of Spectral Theory   11(1) 355-367   2021年3月   [査読有り]
The norm resolvent convergence of discrete Schrödinger operators to a
continuum Schrödinger operator in the continuum limit is proved under
relatively weak assumptions. This result implies, in particular, the
convergence of the spectrum with r...
 
Kentaro Kameoka   Shu Nakamura   
Pure and Applied Analysis   2(4) 861-873   2020年12月   [査読有り]
The resonances for the Wigner-von Neumann type Hamiltonian are defined by the
periodic complex distortion in the Fourier space. Also, following Zworski, we
characterize resonances as the limit points of discrete eigenvalues of the
Hamiltonian with...
 
Shu Nakamura   
Annales Henri Poincaré   21(10) 3119-3139   2020年10月   [査読有り]
 
Jussi Behrndt   Fritz Gesztesy   Shu Nakamura   
Mathematische Annalen   371(3-4) 1-46   2017年9月   [査読有り]
The spectral shift function of a pair of self-adjoint operators is expressed via an abstract operator-valued Titchmarsh–Weyl m-function. This general result is applied to different self-adjoint realizations of second-order elliptic partial differe...

MISC

 
 
Shu Nakamura   Kouichi Taira   
   2022年3月
Let Tex be the spacetime, where Tex is a closed manifold
equipped with a Riemannian metric Tex, and we consider a symmetric Klein-Gordon
type operator Tex on Tex, which is asymptotically converges to
Tex a...
 
Shu Nakamura   Kouichi Taira   
   2022年2月
Here we discuss a new simplified proof of the essential self-adjointness for
formally self-adjoint differential operators of real principal type, previously
proved by Vasy (2020) and Nakamura-Taira (2021). For simplicity, here we
discuss the secon...
 
Pavel Exner   Shu Nakamura   Yukihide Tadano   
   2022年2月
We consider the quantum graph Hamiltonian on the square lattice in Euclidean
space, and we show that the spectrum of the Hamiltonian converges to the
corresponding Schrödinger operator on the Euclidean space in the continuum
limit, and that the ...
 
Shu Nakamura   
   2021年1月
We propose a method of data quantization of finite discrete-time signals
which optimizes the error estimate of low frequency Haar coefficients. We also
discuss the error/noise bounds of this quantization in the Fourier space. Our
result shows one ...
 
Shu Nakamura   
   2018年4月   
We consider scattering matrix for Schr\&quot;odinger-type operators on Tex with<br />
perturbation Tex as Tex. We show that<br />
the scattering matrix (with time-independent modifiers) is a pseudodifferent...