Curriculum Vitaes

Udagawa Masafumi

  (宇田川 将文)

Profile Information

Affiliation
Gakushuin University

Researcher number
80431790
J-GLOBAL ID
201601016041488112
researchmap Member ID
B000265693

Papers

 35

Misc.

 50
  • Tomohiro Yoshida, Masafumi Udagawa
    PHYSICAL REVIEW B, 94(6), Aug, 2016  
  • 寺澤大樹, 大西隆史, 山下卓也, 常盤欣文, 宇田川将文, 木村健太, HALIM Mario, 中辻知, 寺嶋孝仁, 芝内孝禎, 松田祐司
    日本物理学会講演概要集(CD-ROM), 71(1) ROMBUNNO.21PAU-9, Mar 22, 2016  
  • 吉田智大, 宇田川将文
    日本物理学会講演概要集(CD-ROM), 71(1) ROMBUNNO.21PBA-12, Mar 22, 2016  
  • 宇田川将文
    日本物理学会講演概要集(CD-ROM), 71(1) ROMBUNNO.19PAU-5, Mar 22, 2016  
  • 那須譲治, 宇田川将文, 求幸年
    日本物理学会誌, 70(10) 776-781, Oct 5, 2015  
    The Kitaev model has recently attracted considerable attention in broad areas of research owing to the topological nature and quantum spin-liquid (QSL) ground states. This is defined on a honeycomb lattice, and is exactly solvable due to the Ising conserved quantities on each hexagon. In this study, we investigate the thermodynamics of a three-dimensional extension of the Kitaev model defined on a hyperhoneycomb lattice. This model can be rewritten as a free Majorana fermion system coupled with Ising variables. Using this representation, we have performed the Monte Carlo simulation and analyzed the thermodynamic properties. We find that the model exhibits a finite-temperature phase transition between the QSLs and paramagnet in the whole parameter range. This result indicates that the QSL phases at low temperatures are always distinguished from the high-temperature paramagnet by a phase transition. We also find that the difference between QSL and paramagnet comes from the topological nature of the excitations.