Faculty of International Social Sciences

Toru Shimada

  (嶋田 透)

Profile Information

Affiliation
Professor, Faculty of Science Department of Life Science, Gakushuin University
(Emeritus Professor), The University of Tokyo
Degree
Ph.D.(Mar, 1987, The University of Tokyo)

Researcher number
20202111
ORCID ID
 https://orcid.org/0000-0002-5791-0000
J-GLOBAL ID
200901095804616011
Researcher ID
A-2033-2011
researchmap Member ID
1000012955

External link

Genetic and molecular biological studies on the silkworm and other lepidopteran insects. Special interests in development, reproduction, physiology, behavior, and evolution.


Major Papers

 245
  • Jung Lee, Toshiaki Fujimoto, Katsushi Yamaguchi, Shuji Shigenobu, Ken Sahara, Atsushi Toyoda, Toru Shimada
    Molecular Ecology, Jun 12, 2024  Peer-reviewed
  • Kenta Tomihara, Saori Tanaka, Susumu Katsuma, Toru Shimada, Jun Kobayashi, Takashi Kiuchi
    Insect Biochemistry and Molecular Biology, 155 103933, Apr, 2023  Peer-reviewed
    In this study, we found two embryonic lethal mutations, t04 lethal (l-t04) and m04 lethal (l-m04), in semiconsomic strains T04 and M04, respectively. In these semiconsomic strains, the entire diploid genome, except for one chromosome 4 of the wild silkworm Bombyx mandarina, is substituted with chromosomes of the domesticated silkworm B. mori, and l-t04 and l-m04 mutations are located on B. mandarina-derived chromosome 4. To clarify the cause of the lethalities and the genes responsible for these mutations, positional cloning and CRISPR/Cas9 mediated knockout screening were performed. Finally, genetic complementation tests l-t04l-m04 identified the mutations responsible for the l-t04 and l-m04 as the Bombyx homolog of imaginal discs arrested (Bmida) and TATA box binding protein-associated factor 5 (BmTaf5), respectively. Lethal stages of each knockout mutant indicated that the importance of these genes in B. mori late embryogenesis. The lethal mutations responsible for l-t04 and l-m04 were not found in parental strains or wild B. mandarina collected from 39 distinct locations in Japan, indicating that both mutations were independently introduced during or after the development of the semiconsomic strains. We conclude that the recessive embryonic lethality in the T04 and M04 strains is due to deleterious mutations produced in B. mandarina-derived chromosome 4.
  • Tsuguru Fujii, Maki Kubo, Seigou Kuwazaki, Kimiko Yamamoto, Akio Ohnuma, Yutaka Banno, Toru Shimada
    Journal of Insect Biotechnology and Sericology, 91(3) 41-50, Oct, 2022  Peer-reviewed
  • Tsuguru Fujii, Takashi Kiuchi, Takaaki Daimon, Katsuhiko lto, Susumu Katsuma, Toru Shimada, Kimiko Yamamoto, Yutaka Banno
    Journal of Insect Biotechnology and Sericology, 90(2) 33-40, Jun, 2021  Peer-reviewed
  • Xiangping Dai, Takashi Kiuchi, Yanyan Zhou, Shunze Jia, Yusong Xu, Susumu Katsuma, Toru Shimada, Huabing Wang
    Molecular Biology and Evolution, 38(7) 2897-2914, Mar 19, 2021  Peer-reviewed
    <title>Abstract</title> Horizontal gene transfer (HGT) is a potentially critical source of material for ecological adaptation and the evolution of novel genetic traits. However, reports on posttransfer duplication in organism genomes are lacking, and the evolutionary advantages conferred on the recipient are generally poorly understood. Sucrase plays an important role in insect physiological growth and development. Here, we performed a comprehensive analysis of the evolution of insect β-fructofuranosidase transferred from bacteria via HGT. We found that posttransfer duplications of β-fructofuranosidase were widespread in Lepidoptera and sporadic occurrences of β-fructofuranosidase were found in Coleoptera and Hymenoptera. β-fructofuranosidase genes often undergo modifications, such as gene duplication, differential gene loss, and changes in mutation rates. Lepidopteran β-fructofuranosidase gene (SUC) clusters showed marked divergence in gene expression patterns and enzymatic properties in Bombyx mori (moth) and Papilio xuthus (butterfly). We generated SUC1 mutations in B. mori using CRISPR/Cas9 to thoroughly examine the physiological function of SUC. BmSUC1 mutant larvae were viable but displayed delayed growth and reduced sucrase activities that included susceptibility to the sugar mimic alkaloid found in high concentrations in mulberry. BmSUC1 served as a critical sucrase and supported metabolic homeostasis in the larval midgut and silk gland, suggesting that gene transfer of β-fructofuranosidase enhanced the digestive and metabolic adaptation of lepidopteran insects. These findings highlight not only the universal function of β-fructofuranosidase with a link to the maintenance of carbohydrate metabolism but also an underexplored function in the silk gland. This study expands our knowledge of posttransfer duplication and subsequent functional diversification in the adaptive evolution and lineage-specific adaptation of organisms.
  • Jung Lee, Tomoaki Nishiyama, Shuji Shigenobu, Katsushi Yamaguchi, Yutaka Suzuki, Toru Shimada, Susumu Katsuma, Takashi Kiuchi
    Molecular Ecology Resources, 21(1) 327-339, Oct 16, 2020  Peer-reviewed
    Samia ricini, a gigantic saturniid moth, has the potential to be a novel lepidopteran model species. Samia ricini is far more resistant to diseases than the current model species Bombyx mori, and therefore can be more easily reared. In addition, genetic resources available for S. ricini rival those for B. mori: at least 26 ecoraces of S. ricini are reported and S. ricini can hybridize with wild Samia species, which are distributed throughout Asian countries, and produce fertile progenies. Physiological traits such as food preference, integument colour and larval spot pattern differ among S. ricini strains and wild Samia species so that those traits can be targeted in forward genetic analyses. To facilitate genetic research in S. ricini, we determined its whole genome sequence. The assembled genome of S. ricini was 458 Mb with 155 scaffolds, and the scaffold N50 length of the assembly was ~ 21 Mb. In total, 16,702 protein coding genes were predicted. While the S. ricini genome was mostly collinear with that of B. mori with some rearrangements and few S. ricini-specific genes were discovered, chorion genes and fibroin genes seemed to have expanded in the S. ricini lineage. As the first step of genetic analyses, causal genes for "Blue," "Yellow," "Spot," and "Red cocoon" phenotypes were mapped to chromosomes.
  • Zhou Y, Li X, Katsuma S, Xu Y, Shi L, Shimada T, Wang H
    Molecular ecology, 28(24) 5282-5298, Dec, 2019  Peer-reviewed
    Gene duplication provides a major source of new genes for evolutionary novelty and ecological adaptation. However, the maintenance of duplicated genes and their relevance to adaptive evolution has long been debated. Insect trehalase (Treh) plays key roles in energy metabolism, growth, and stress recovery. Here, we show that the duplication of Treh in Lepidoptera (butterflies and moths) is linked with their adaptation to various environmental stresses. Generally, two Treh genes are present in insects: Treh1 and Treh2. We report three distinct forms of Treh in lepidopteran insects, where Treh1 was duplicated into two gene clusters (Treh1a and Treh1b). These gene clusters differ in gene expression patterns, enzymatic properties, and subcellular localizations, suggesting that the enzymes probably underwent sub- and/or neofunctionalization in the lepidopteran insects. Interestingly, selective pressure analysis provided significant evidence of positive selection on duplicate Treh1b gene in lepidopteran insect lineages. Most positively selected sites were located in the alpha-helical region, and several sites were close to the trehalose binding and catalytic sites. Subcellular adaptation of duplicate Treh1b driven by positive selection appears to have occurred as a result of selected changes in specific sequences, allowing for rapid reprogramming of duplicated Treh during evolution. Our results suggest that gene duplication of Treh and subsequent functional diversification could increase the survival rate of lepidopteran insects through various regulations of intracellular trehalose levels, facilitating their adaptation to diverse habitats. This study provides evidence regarding the mechanism by which gene family expansion can contribute to species adaptation through gene duplication and subsequent functional diversification.
  • Tomihara K, Satta K, Shimada T, Kiuchi T
    Journal of Insect Biotechnology and Sericology, 88(2) 31-38, Aug, 2019  Peer-reviewed
  • Munetaka Kawamoto, Akiya Jouraku, Atsushi Toyoda, Kakeru Yokoi, Yohei Minakuchi, Susumu Katsuma, Asao Fujiyama, Takashi Kiuchi, Kimiko Yamamoto, Toru Shimada
    Insect Biochemistry and Molecular Biology, 107 53-62, Apr, 2019  Peer-reviewed
    In 2008, the genome assembly and gene models for the domestic silkworm, Bombyx mori, were published by a Japanese and Chinese collaboration group. However, the genome assembly contains a non-negligible number of misassembled and gap regions due to the presence of many repetitive sequences within the silkworm genome. The erroneous genome assembly occasionally causes incorrect gene prediction. Here we performed hybrid assembly based on 140 × deep sequencing of long (PacBio) and short (Illumina) reads. The remaining gaps in the initial genome assembly were closed using BAC and Fosmid sequences, giving a new total length of 460.3 Mb, with 30 gap regions and an N50 comprising 16.8 Mb in scaffolds and 12.2 Mb in contigs. More RNA-seq and piRNA-seq reads were mapped on the new genome assembly compared with the previous version, indicating that the new genome assembly covers more transcribed regions, including repetitive elements. We performed gene prediction based on the new genome assembly using available mRNA and protein sequence data. The number of gene models was 16,880 with an N50 of 2154 bp. The new gene models reflected more accurate coding sequences and gene sets than old ones. The proportion of repetitive elements was also reestimated using the new genome assembly, and was calculated to be 46.8% in the silkworm genome. The new genome assembly and gene models are provided in SilkBase (http://silkbase.ab.a.u-tokyo.ac.jp).
  • Kiuchi T, Sugano Y, Shimada T, Katsuma S
    Insect Biochemistry and Molecular Biology, 104 30-38, Jan, 2019  Peer-reviewed
  • Wang L, Dong Z, Wang J, Yin Y, Liu H, Hu W, Peng Z, Liu C, Li M, Banno Y, Shimada T, Xia Q, Zhao P
    Journal of Insect Science, 18(6) 4, Nov, 2018  Peer-reviewed
  • Zhang H, Kiuchi T, Hirayama C, Banno Y, Katsuma S, Shimada T
    Genetica, 146(4-5) 425-431, Oct, 2018  Peer-reviewed
  • Takai H, Ozawa R, Takabayashi J, Fujii S, Arai K, Ichiki RT, Koeduka T, Dohra H, Ohnishi T, Taketazu S, Kobayashi J, Kainoh Y, Nakamura S, Fujii T, Ishikawa Y, Kiuchi T, Katsuma S, Uefune M, Shimada T, Matsui K
    Scientific Reports, 8(1) 11942, Aug, 2018  Peer-reviewed
    © 2018, The Author(s). In response to herbivory, plants emit a blend of volatile organic compounds that includes green leaf volatiles (GLVs) and terpenoids. These volatiles are known to attract natural enemies of herbivores and are therefore considered to function as an indirect defense. Selection should favor herbivores that are able to suppress these volatile emissions, and thereby make themselves less conspicuous to natural enemies. We tested this possibility for silkworms, which were observed to leave secretions from their spinnerets while feeding on mulberry leaves. When we ablated the spinnerets of silkworms, no secretions were observed. Leaves infested by intact silkworms released smaller amounts of GLVs than leaves infested by ablated silkworms, indicating that the spinneret secretion suppressed GLV production. This difference in GLV emissions was also reflected in the behavioral response of Zenillia dolosa (Tachinidae), a parasitoid fly of silkworms. The flies laid fewer eggs when exposed to the volatiles from intact silkworm-infested leaves than when exposed to the volatiles from ablated silkworm-infested leaves. We identified a novel enzyme in the secretion from the spinneret that is responsible for the GLV suppression. The enzyme converted 13(S)-hydroperoxy-(9Z,11E,15Z)-octadecatrienoic acid, an intermediate in the biosynthetic pathway of GLVs, into its keto-derivative in a stereospecific manner. Taken together, this study shows that silkworms are able to feed on mulberry in a stealthy manner by suppressing GLV production with an enzyme in secretions of their spinnerets, which might be a countermeasure against induced indirect defense by mulberry plants.
  • Fukui T, Kiuchi T, Shoji K, Kawamoto M, Shimada T, Katsuma S
    Biochemical and biophysical research communications, 503(3) 1768-1772, Jul, 2018  Peer-reviewed
    The Masculinizer gene (Masc) encodes a CCCH tandem zinc finger protein essential for masculinization and dosage compensation in the silkworm Bombyx mori. Previously we identified a Masc orthologue from the crambid Ostrinia furnacalis (OfMasc) and observed its masculinizing activity in the B. mori cultured cell line BmN-4. However, the role of OfMasc in masculinization of O. furnacalis has not been assessed. In this study, we unexpectedly discovered that all of the male larvae that escaped from Wolbachia-induced embryonic male-killing by OfMasc cRNA injection expressed the female-type splicing variants of O. furnacalis doublesex (Ofdsx). To clarify the role of OfMasc in the masculinization process in vivo, we established a system to monitor both sex chromosome- and dsx splicing-based sexes from a single O. furnacalis embryo. Using this system, we investigated the effects of OfMasc knockdown in early embryos on Ofdsx splicing and found that depletion of OfMasc mRNA in male embryos induced the production of the female-type splicing variants of Ofdsx. This result indicates that OfMasc is required for masculinization in O. furnacalis, and that the Masc protein possesses masculinizing activity in an insect species that is phylogenetically distant from Bombycidae.
  • Ito K, Kidokoro K, Katsuma S, Sezutsu H, Uchino K, Kobayashi I, Tamura T, Yamamoto K, Mita K, Shimada T, Kadono-Okuda K
    Scientific Reports, 8(1) 7430, May, 2018  Peer-reviewed
    Bombyx mori densovirus type 1 (BmDV) is a pathogen that causes flacherie disease in the silkworm. The absolute nonsusceptibility to BmDV among certain silkworm strains is determined independently by two genes, nsd-1 and Nid-1. However, neither of these genes has been molecularly identified to date. Here, we isolated the nsd-1 gene by positional cloning and characterized the properties of its product, NSD-1. Sequence and biochemical analyses revealed that this gene encodes a Bombyx-specific mucin-like glycoprotein with a single transmembrane domain. The NSD-1 protein was specifically expressed in the larval midgut epithelium, the known infection site of BmDV. Sequence analysis of the nsd-1 gene from 13 resistant and 12 susceptible strains suggested that a specific arginine residue in the extracellular tail of the NSD-1 protein was common among susceptible strains. Germline transformation of the susceptible-type nsd-1 (with a single nucleotide substitution) conferred partial susceptibility to resistant larvae, indicating that the + nsd-1 gene is required for the susceptibility of B. mori larvae to BmDV and the susceptibility is solely a result of the substitution of a single amino acid with arginine. Taken together, our results provide striking evidence that a novel membrane-bound mucin-like protein functions as a cell-surface receptor for a densovirus.
  • Takai H, Asaoka K, Ishizuna F, Kiuchi T, Katsuma S, Shimada T
    Arthropod structure & development, 47(3) 238-247, May, 2018  Peer-reviewed
    Gustatory and olfactory senses of phytophagous insects play important roles in the recognition of host plants. In the domestic silkmoth Bombyx mori and its wild species Bombyx mandarina, the morphologies and responses of adult olfactory organs (antennae) have been intensely investigated. However, little is known about these features of adult gustatory organs and the influence of domestication on the gustatory sense. Here we revealed that both species have two types of sensilla (thick [T] and slim [S] types) on the fifth tarsomeres of the adult legs. In both species, females have 3.6–6.9 times more T-sensilla than males. Therefore, T-sensilla seem to play more important roles in females than in males. Moreover, gustatory cells of T-sensilla of B. mandarina females responded intensely to mulberry leaf extract in electrophysiological experiments, while T-sensilla of B. mori females (N4 strain) hardly responded to mulberry leaf extract. These results suggest that T-sensilla of B. mandarina females are involved in the recognition of oviposition sites. We also observed that, in three B. mori strains (N4, p50T, and Kinshu × Showa), the densities of sensilla on the fifth tarsomeres were much lower than in B. mandarina. These results indicate that domestication has influenced the tarsal gustatory system of B. mori.
  • Hikida H, Kokusho R, Kobayashi J, Shimada T, Katsuma S
    Virus research, 249 124-131, Apr, 2018  Peer-reviewed
    Lepidopteran nucleopolyhedroviruses have distinct viral tissue tropisms in host larvae. We previously identified the Bm8 gene of Bombyx mori nucleopolyhedrovirus (BmNPV), the product of which inhibits viral propagation in the middle silk gland (MSG). However, it is unknown whether this inhibitory function of the Bm8 protein is specific to MSGs. Here we generated a Bm8-disrupted recombinant BmNPV expressing green fluorescent protein (GFP) and examined viral propagation in B. mori cultured cells and larvae. We found that Bm8-disrupted BmNPV produced fewer budded viruses and more occlusion bodies (OBs) than the wild-type virus in both cultured cells and larvae. Microscopic observation of OB production and GFP expression revealed that Bm8 disruption accelerated the progression of viral infection in various larval tissues. Furthermore, quantitative reverse transcription-polymerase chain reaction experiments showed that the loss of Bm8 enhanced viral gene expression in BmNPV-infected larval tissues. These results indicate that the Bm8 protein suppresses viral propagation to varying degrees in each larval tissue, which may establish BmNPV tissue tropisms in B. mori larvae.
  • Zhang, H, Kiuchi, T, Hirayama, C, Katsuma, S, Shimada, T
    Insect Biochemistry and Molecular Biology, 92 65-72, Jan, 2018  Peer-reviewed
    The Drosophila eye color gene brown is known to control the transport of pteridine precursors in adult eyes. The Brown protein belongs to the ATP-binding cassette (ABC) transporter G family, which includes proteins encoded by the genes brown, scarlet, and white. These genes are responsible for pigmentation in Drosophila and the domestic silkworm Bombyx mori. Although orthologs of brown are conserved among insects, the function of this gene is only known in Drosophila. Here, we elucidated the function of the B. mori ortholog Bm-brown. We examined the spatial and temporal expression profiles of Bm-brown and found that this gene was specifically and continuously expressed in larval Malpighian tubules (MTs), indicating this gene has a special function in MTs. We then successfully obtained a Bm-brown knockout (KO) strain based on a wild-type (WT) strain using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) system. We found that larval MTs of the KO strain were white, whereas those of WT were yellow. It is known that larval yellow MTs of WT are due to the accumulation of riboflavin. Therefore, we compared the riboflavin contents of MTs of KO and WT strains, and found that the riboflavin level in the KO strain was 20 fold less than that in WT during the 5th instar period. MTs are known to exhibit a similar milky color in w-3 mutant larvae due to a deficiency of riboflavin accumulation. The responsible gene for w-3 mutant is the Bmwh3 gene, which is orthologous to Drosophila white. Thus, we speculate that Bm-brown is heterodimerized with Bmwh3, similar to Brown/White in Drosophila, and acts as a riboflavin transporter in silkworm MTs.
  • Lee J, Kiuchi T, Kawamoto M, Shimada T, Katsuma S
    PloS one, 13(10) e0205758, 2018  Peer-reviewed
  • Namiki S, Fujii T, Shimada T, Kanzaki R
    Scientific Reports, 7(1) 14050, Oct, 2017  Peer-reviewed
    How to wire a neural circuit is crucial for the functioning of the nervous system. Here, we describe the neuroanatomy of the olfactory neurons in the spli mutant strain of silkmoth (Bombyx mori) to investigate the function of a transcription factor involved in neuronal wiring in the central olfactory circuit. The genomic structure of the gene Bmacj6, which encodes a class IV POU domain transcription factor, is disrupted in the spli mutant. We report the neuroanatomical abnormality in the morphology of the antennal lobe projection neurons (PNs) that process the sex pheromone. In addition to the mistargeting of dendrites and axons, we found axonal bifurcation within the PNs. These results indicate that the morphology of neurons in the pheromone processing pathway is modified by Bmacj6.
  • Zhang H, Kiuchi T, Wang L, Kawamoto M, Suzuki Y, Sugano S, Banno Y, Katsuma S, Shimada T
    Gene, 629 92-100, Sep, 2017  Peer-reviewed
    "Tanaka's mottled translucent" (otm) is a mutation of the silkworm Bombyx mori that exhibits translucent skin during larval stages. We performed positional cloning of the gene responsible for otm and mapped it to a 364-kb region on chromosome 5 that contains 22 hypothetical protein-coding genes. We performed RNA-seq analysis of the epidermis and fat body of otm larvae and determined that the gene BGIBMGA002619 may be responsible for the otm mutation. BGIBMGA002619 encodes the biosynthesis of lysosome-related organelles complex 1 (BLOC-1) subunit 5, whose ortholog is responsible for the Muted mutant in mouse. Accordingly, we named this gene Bm-muted. We discovered that the expression of Bm-muted in the epidermis and fat body of otm mutants was dramatically suppressed compared with the wild type. We determined the nucleotide sequences of the full-length cDNA and genomic region corresponding to Bm-muted and found that a 538-bp long DNA sequence similar to B. mori transposon Organdy was inserted into the 3' end of the first intron of Bm-muted in two otm strains. The Bm-muted cDNA of otm mutants lacked exon 2, and accordingly generated a premature stop codon in exon 3. In addition, short interfering RNA (siRNA)-mediated knockdown of this gene caused localized partial translucency of larval skin. These data indicate that the mutation in Bm-muted caused the oats-mutant phenotype. We propose that the insertion of Organdy caused a splicing disorder in Bm-muted in the otm mutant, resulting in a null mutation of Bm-muted. This mutation is likely to cause deficiencies in urate granule formation in epidermal cells that result in translucent larval skin.
  • Shoji K, Suzuki Y, Sugano S, Shimada T, Katsuma S
    RNA (New York, N.Y.), 23(1) 86-97, Jan, 2017  Peer-reviewed
    PIWI-interacting RNAs (piRNAs) play essential roles in the defense system against selfish elements in animal germline cells by cooperating with PIWI proteins. A subset of piRNAs is predicted to be generated via the "ping-pong" cascade, which is mainly controlled by two different PIWI proteins. Here we established a cell-based artificial piRNA production system using a silkworm ovarian cultured cell line that is believed to possess a complete piRNA pathway. In addition, we took advantage of a unique silkworm sex-determining one-to-one ping-pong piRNA pair, which enabled us to precisely monitor the behavior of individual artificial piRNAs. With this novel strategy, we successfully generated artificial piRNAs against endogenous protein-coding genes via the expected back-and-forth traveling mechanism. Furthermore, we detected "primary" piRNAs from the upstream region of the artificial "ping-pong" site in the endogenous gene. This artificial piRNA production system experimentally confirms the existence of the "ping-pong" cascade of piRNAs. Also, this system will enable us to identify the factors involved in both, or each, of the "ping" and "pong" cascades and the sequence features that are required for efficient piRNA production.

Misc.

 164

Major Books and Other Publications

 14

Major Teaching Experience

 33

Major Research Projects

 45

Industrial Property Rights

 1