研究者業績

嶋田 透

シマダ トオル  (Toru Shimada)

基本情報

所属
学習院大学 理学部 生命科学科 教授
東京大学 (名誉教授)
学位
農学博士(1987年3月 東京大学)

研究者番号
20202111
ORCID ID
 https://orcid.org/0000-0002-5791-0000
J-GLOBAL ID
200901095804616011
Researcher ID
A-2033-2011
researchmap会員ID
1000012955

外部リンク

カイコや野蚕を主たる材料にして、ゲノム科学、遺伝学、進化生物学などの研究を進めている。


主要な論文

 253
  • Tsuguru Fujii, Masato Hino, Toshiaki Fujimoto, Kohei Kakino, Yu Kaneko, Hiroaki Abe, Jae Man Lee, Takahiro Kusakabe, Toru Shimada
    Insect Biochemistry and Molecular Biology 178 104264 2025年3月  査読有り
  • Jung Lee, Toshiaki Fujimoto, Ken Sahara, Atsushi Toyoda, Toru Shimada
    Scientific Data 2025年2月28日  
  • Tsuguru Fujii, Kuwazaki Seigo, Hiroaki Abe, Toshiaki Fujimoto, Masato Hino, Kimiko Yamamoto, Toru Shimada
    Journal of Insect Biotechnology and Sericology 93(3) 2025年2月12日  査読有り
  • Jung Lee, Toshiaki Fujimoto, Katsushi Yamaguchi, Shuji Shigenobu, Ken Sahara, Toru Shimada
    Scientific Data 12(1) 124 2025年1月21日  査読有り
  • Jung Lee, Mana Okamoto, Rin Kawagoe, Toru Shimada
    bioRxiv 2025年1月11日  
  • Jung Lee, Takashi Kiuchi, Katsushi Yamaguchi, Shuji Shigenobu, Atsushi Toyoda, Toru Shimada
    Scientific Data 12(1) 27 2025年1月7日  査読有り
  • Jung Lee, Toshiaki Fujimoto, Katsushi Yamaguchi, Shuji Shigenobu, Ken Sahara, Atsushi Toyoda, Toru Shimada
    Molecular Ecology 33(14) e17434 2024年7月  査読有り
  • Kenta Tomihara, Saori Tanaka, Susumu Katsuma, Toru Shimada, Jun Kobayashi, Takashi Kiuchi
    Insect Biochemistry and Molecular Biology 155 103933 2023年4月  査読有り
    In this study, we found two embryonic lethal mutations, t04 lethal (l-t04) and m04 lethal (l-m04), in semiconsomic strains T04 and M04, respectively. In these semiconsomic strains, the entire diploid genome, except for one chromosome 4 of the wild silkworm Bombyx mandarina, is substituted with chromosomes of the domesticated silkworm B. mori, and l-t04 and l-m04 mutations are located on B. mandarina-derived chromosome 4. To clarify the cause of the lethalities and the genes responsible for these mutations, positional cloning and CRISPR/Cas9 mediated knockout screening were performed. Finally, genetic complementation tests l-t04l-m04 identified the mutations responsible for the l-t04 and l-m04 as the Bombyx homolog of imaginal discs arrested (Bmida) and TATA box binding protein-associated factor 5 (BmTaf5), respectively. Lethal stages of each knockout mutant indicated that the importance of these genes in B. mori late embryogenesis. The lethal mutations responsible for l-t04 and l-m04 were not found in parental strains or wild B. mandarina collected from 39 distinct locations in Japan, indicating that both mutations were independently introduced during or after the development of the semiconsomic strains. We conclude that the recessive embryonic lethality in the T04 and M04 strains is due to deleterious mutations produced in B. mandarina-derived chromosome 4.
  • Tsuguru Fujii, Maki Kubo, Seigou Kuwazaki, Kimiko Yamamoto, Akio Ohnuma, Yutaka Banno, Toru Shimada
    Journal of Insect Biotechnology and Sericology 91(3) 41-50 2022年10月  査読有り
  • Tsuguru Fujii, Takashi Kiuchi, Takaaki Daimon, Katsuhiko lto, Susumu Katsuma, Toru Shimada, Kimiko Yamamoto, Yutaka Banno
    Journal of Insect Biotechnology and Sericology 90(2) 33-40 2021年6月  査読有り
  • Xiangping Dai, Takashi Kiuchi, Yanyan Zhou, Shunze Jia, Yusong Xu, Susumu Katsuma, Toru Shimada, Huabing Wang
    Molecular Biology and Evolution 38(7) 2897-2914 2021年3月19日  査読有り
    <title>Abstract</title> Horizontal gene transfer (HGT) is a potentially critical source of material for ecological adaptation and the evolution of novel genetic traits. However, reports on posttransfer duplication in organism genomes are lacking, and the evolutionary advantages conferred on the recipient are generally poorly understood. Sucrase plays an important role in insect physiological growth and development. Here, we performed a comprehensive analysis of the evolution of insect β-fructofuranosidase transferred from bacteria via HGT. We found that posttransfer duplications of β-fructofuranosidase were widespread in Lepidoptera and sporadic occurrences of β-fructofuranosidase were found in Coleoptera and Hymenoptera. β-fructofuranosidase genes often undergo modifications, such as gene duplication, differential gene loss, and changes in mutation rates. Lepidopteran β-fructofuranosidase gene (SUC) clusters showed marked divergence in gene expression patterns and enzymatic properties in Bombyx mori (moth) and Papilio xuthus (butterfly). We generated SUC1 mutations in B. mori using CRISPR/Cas9 to thoroughly examine the physiological function of SUC. BmSUC1 mutant larvae were viable but displayed delayed growth and reduced sucrase activities that included susceptibility to the sugar mimic alkaloid found in high concentrations in mulberry. BmSUC1 served as a critical sucrase and supported metabolic homeostasis in the larval midgut and silk gland, suggesting that gene transfer of β-fructofuranosidase enhanced the digestive and metabolic adaptation of lepidopteran insects. These findings highlight not only the universal function of β-fructofuranosidase with a link to the maintenance of carbohydrate metabolism but also an underexplored function in the silk gland. This study expands our knowledge of posttransfer duplication and subsequent functional diversification in the adaptive evolution and lineage-specific adaptation of organisms.
  • Jung Lee, Tomoaki Nishiyama, Shuji Shigenobu, Katsushi Yamaguchi, Yutaka Suzuki, Toru Shimada, Susumu Katsuma, Takashi Kiuchi
    Molecular Ecology Resources 21(1) 327-339 2020年10月16日  査読有り
    Samia ricini, a gigantic saturniid moth, has the potential to be a novel lepidopteran model species. Samia ricini is far more resistant to diseases than the current model species Bombyx mori, and therefore can be more easily reared. In addition, genetic resources available for S. ricini rival those for B. mori: at least 26 ecoraces of S. ricini are reported and S. ricini can hybridize with wild Samia species, which are distributed throughout Asian countries, and produce fertile progenies. Physiological traits such as food preference, integument colour and larval spot pattern differ among S. ricini strains and wild Samia species so that those traits can be targeted in forward genetic analyses. To facilitate genetic research in S. ricini, we determined its whole genome sequence. The assembled genome of S. ricini was 458 Mb with 155 scaffolds, and the scaffold N50 length of the assembly was ~ 21 Mb. In total, 16,702 protein coding genes were predicted. While the S. ricini genome was mostly collinear with that of B. mori with some rearrangements and few S. ricini-specific genes were discovered, chorion genes and fibroin genes seemed to have expanded in the S. ricini lineage. As the first step of genetic analyses, causal genes for "Blue," "Yellow," "Spot," and "Red cocoon" phenotypes were mapped to chromosomes.
  • Zhou Y, Li X, Katsuma S, Xu Y, Shi L, Shimada T, Wang H
    Molecular Ecology 28(24) 5282-5298 2019年12月  査読有り
  • Tomihara K, Satta K, Shimada T, Kiuchi T
    Journal of Insect Biotechnology and Sericology 88(2) 31-38 2019年8月  査読有り
  • Kawamoto M, Jouraku A, Toyoda A, Yokoi K, Minakuchi Y, Katsuma S, Fujiyama A, Kiuchi T, Yamamoto K, Shimada T
    Insect Biochemistry and Molecular Biology 107 53-62 2019年4月  査読有り

MISC

 176

主要な書籍等出版物

 14

主要な教育業績(担当経験のある科目)

 33

主要な所属学協会

 15

主要な共同研究・競争的資金等の研究課題

 50

産業財産権

 1