S Yamashiro, T Noguchi, Mabuchi, I
CELL MOTILITY AND THE CYTOSKELETON, 55(1) 36-50, May, 2003
Mammalian IQGAP1 is considered to modulate organization of the actin cytoskeleton under regulation of signaling proteins Cdc42 or Rac and calmodulin [Bashour et al., 1997: J Cell Biol 137:1555-1566; Hart et al., 1996: EMBO J 15:2997-3005] and also to be involved in cadherin-based cell adhesion [Kuroda et al., 1998: Science 281:832-835]. However, its function in the cell has not been clear. In order to clarify the function of IQGAP, we investigated IQGAP in Xenopus laevis cells. We isolated two Xenopus cDNAs encoding homologues of mammalian IQGAP, XIQGAP1, and XIQGAP2, which show high homology with human IQGAP1 and IQGAP2, respectively. Immunofluorescent localization of XIQGAPs in Xenopus tissue cultured cells (XTC cells) and in developing embryos was examined. In XTC cells, XIQGAP1 was colocalized with F-actin at cell-to-cell contact sites, membrane ruffles in lamellipodia, and filopodia. During development of embryos, XIQGAP1 was concentrated in the borders of all embryonic cells. An intense staining for XIQGAP1 was found in regions undergoing active morphogenetic movements, such as the blastopore lip of gastrulae, and the neural plate, the notochord, and the somite of neurulae. These results suggest that XIQGAP1 is involved in both cell-to-cell adhesion and cell migration during Xenopus embryogenesis and in cultured cells. On the other hand, the localization of XIQGAP2 in XTC cells was distinct from that of XIQGAP1 although it was also seen in lamellipodia, filopodia, and borders between cells. In addition to these regions, strong nuclear staining was observed in both XTC cells and embryonic cells. (C) 2003 Wiley-Liss, Inc.