Faculty of International Social Sciences

Tatsuya Haga

  (芳賀 達也)

Profile Information

Affiliation
Professor, Faculty of Science, Department of Chemistry, Biochemistry, Gakushuin University
Degree
Ph.D.(The University of Tokyo)
(BLANK)
(BLANK)

J-GLOBAL ID
200901090206888960
researchmap Member ID
1000011101

External link

Awards

 1

Misc.

 79
  • Takashi Okuda, Tatsuya Haga
    Neurochemical Research, 28(3-4) 483-488, Apr 1, 2003  
    The cholinergic neurons have long been a model for biochemical studies of neurotransmission. The components responsible for cholinergic neurotransmission, such as choline acetyltransferase, vesicular acetylcholine transporter, nicotinic and muscarinic acetylcholine receptors, and acetylcholine esterase, have long been defined as functional units and then identified as molecular entities. Another essential component in the cholinergic synapses is the one responsible for choline uptake from the synaptic cleft, which is thought to be the rate-limiting step in acetylcholine synthesis. A choline uptake system with a high affinity for choline has long been assumed to be present in cholinergic neurons. Very recently, the molecular entity for the high-affinity choline transporter was identified and is designated CHT1. CHT1 mediates Na+-and Cl--dependent choline uptake with high sensitivity to hemicholinium-3. CHT1 has been characterized both at the molecular and functional levels and was confirmed to be specifically expressed in cholinergic neurons.
  • N Yoshida, K Haga, T Haga
    EUROPEAN JOURNAL OF BIOCHEMISTRY, 270(6) 1154-1163, Mar, 2003  
    G-protein-coupled receptor kinase 2 (GRK2) is known to specifically phosphorylate the agonist-bound forms of G-protein-coupled receptors (GPCRs). This strict specificity is due at least partly to activation of GRK2 by agonist-bound GPCRs, in which basic residues in intracellular regions adjacent to transmembrane segments are thought to be involved. Tubulin was found to be phosphorylated by GRK2, but it remains unknown if tubulin can also serve as both a substrate and an activator for GRK2. Purified tubulin, phosphorylated by GRK2, was subjected to biochemical analysis, and the phosphorylation sites in beta-tubulin were determined to be Thr409 and Ser420. In addition, the Ser444 in beta(III) -tubulin was also indicated to be phosphorylated by GRK2. The phosphorylation sites in tubulin for GRK2 reside in the C-terminal domain of beta-tubulin, which is on the outer surface of microtubules. Pretreatment of tubulin with protein phosphatase type-2A (PP2A) resulted in a twofold increase in the phosphorylation of tubulin by GRK2. These results suggest that tubulin is phosphorylated in situ probably by GRK2 and that the phosphorylation may affect the interaction of microtubules with microtubule-associated proteins. A GST fusion protein of a C-terminal region of beta(I) -tubulin (393-445 residues), containing 19 acidic residues but only one basic residue, was found to be a good substrate for GRK2, like full-length beta-tubulin. These results, together with the finding that GRK2 may phosphorylate synuclein and phosducin in their acidic domains, indicate that some proteins with very acidic regions but without basic activation domains could serve as substrates for GRK2.
  • N Yoshida, K Haga, T Haga
    EUROPEAN JOURNAL OF BIOCHEMISTRY, 270(6) 1154-1163, Mar, 2003  
    G-protein-coupled receptor kinase 2 (GRK2) is known to specifically phosphorylate the agonist-bound forms of G-protein-coupled receptors (GPCRs). This strict specificity is due at least partly to activation of GRK2 by agonist-bound GPCRs, in which basic residues in intracellular regions adjacent to transmembrane segments are thought to be involved. Tubulin was found to be phosphorylated by GRK2, but it remains unknown if tubulin can also serve as both a substrate and an activator for GRK2. Purified tubulin, phosphorylated by GRK2, was subjected to biochemical analysis, and the phosphorylation sites in beta-tubulin were determined to be Thr409 and Ser420. In addition, the Ser444 in beta(III) -tubulin was also indicated to be phosphorylated by GRK2. The phosphorylation sites in tubulin for GRK2 reside in the C-terminal domain of beta-tubulin, which is on the outer surface of microtubules. Pretreatment of tubulin with protein phosphatase type-2A (PP2A) resulted in a twofold increase in the phosphorylation of tubulin by GRK2. These results suggest that tubulin is phosphorylated in situ probably by GRK2 and that the phosphorylation may affect the interaction of microtubules with microtubule-associated proteins. A GST fusion protein of a C-terminal region of beta(I) -tubulin (393-445 residues), containing 19 acidic residues but only one basic residue, was found to be a good substrate for GRK2, like full-length beta-tubulin. These results, together with the finding that GRK2 may phosphorylate synuclein and phosducin in their acidic domains, indicate that some proteins with very acidic regions but without basic activation domains could serve as substrates for GRK2.

Books and Other Publications

 6

Industrial Property Rights

 4