研究者業績

河本 史紀

カワモト フミノリ  (Fuminori Kawamoto)

基本情報

所属
学習院大学 理学部 数学科 助教
学位
理学博士(学習院大学)

J-GLOBAL ID
200901060889148994
researchmap会員ID
1000361385

MISC

 23
  • F. Kawamoto, Y. Kishi, K. Tomita
    Arch. Math. (Basel) 114 649-660 2020年  査読有り筆頭著者
  • F.Kawamoto, Y.Kishi, H. Suzuki, K.Tomita
    Kyushu J. Math. 73(1) 165-187 2019年  査読有り筆頭著者
  • Fuminori Kawamoto, Yasuhiro Kishi, Koshi Tomita
    Commentarii mathematici Universitatis Sancti Pauli = Rikkyo Daigaku sugaku zasshi 64(2) 131-155 2015年  査読有り筆頭著者
  • Fuminori Kawamoto, Yasuhiro Kishi, Koshi Tomita
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES 90(2) 27-32 2014年2月  
    We give a construction of positive integers with even period of minimal type.
  • Fuminori Kawamoto, Yasuhiro Kishi, Koshi Tomita
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES 90(2) 27-32 2014年2月  
    We give a construction of positive integers with even period of minimal type.
  • Fuminori Kawamoto, Koshi Tomita
    TOKYO JOURNAL OF MATHEMATICS 35(1) 213-239 2012年6月  
    The main purpose of this article is to present a numerical data which shows relations between real quadratic fields of class number 1 and a mysterious behavior of the period of simple continued fraction expansion of certain quadratic irrationals. For that purpose, we define a class number, a fundamental unit, a discriminant and a Yokoi invariant for a non-square positive integer, and then see that a generalization of theorems of Siegel and of Yokoi holds. These and a theorem of Friesen and Halter-Koch imply several interesting conjectures for solving Gauss' class number problem for real quadratic fields.
  • Fuminori Kawamoto, Koshi Tomita
    OSAKA JOURNAL OF MATHEMATICS 46(4) 949-993 2009年12月  
    In a previous paper [4], we introduced the notion of real quadratic fields with period I of minimal type in terms of continued fractions. As a consequence, we have to examine a construction of real quadratic fields with period >= 5 of minimal type in order to find many real quadratic fields of class number 1. When l >= 4, it appears that there exist infinitely many real quadratic fields with period l of minimal type. Indeed, we provided an infinitude of real quadratic fields with period 4 of minimal type in [4]. In this paper, we construct an infinite family of real quadratic fields with large even period of minimal type whose class number is greater than any given positive integer, and whose Yokoi invariant is greater than any given positive integer.
  • Fuminori Kawamoto, Koshi Tomita
    OSAKA JOURNAL OF MATHEMATICS 46(4) 949-993 2009年12月  
    In a previous paper [4], we introduced the notion of real quadratic fields with period I of minimal type in terms of continued fractions. As a consequence, we have to examine a construction of real quadratic fields with period >= 5 of minimal type in order to find many real quadratic fields of class number 1. When l >= 4, it appears that there exist infinitely many real quadratic fields with period l of minimal type. Indeed, we provided an infinitude of real quadratic fields with period 4 of minimal type in [4]. In this paper, we construct an infinite family of real quadratic fields with large even period of minimal type whose class number is greater than any given positive integer, and whose Yokoi invariant is greater than any given positive integer.
  • Fuminori Kawamoto, Koshi Tomita
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN 60(3) 865-903 2008年7月  
    The main purpose of this article is to introduce the notion of real quadratic fields of minimal type in terms of continued fractions with period e. We show that fundamental units of real quadratic fields that are not of minimal type are relatively small. So, we see by a theorem of Siegel that such fields have relatively large class numbers. Also, we show that there exist exactly 51 real quadratic fields of class number 1 that are not of minimal type, with one more possible exception. All such fields are listed in the table of Section 8.2. Therefore we study real quadratic fields with period 9 of minimal type in order to find real quadratic fields of class number 1, and first examine the case where l <= 4. In particular we obtain a result on Yokoi invariants m(d) and class numbers h(d) of real quadratic fields Q(root d) with period 4 of minimal type.
  • H Ichimura, F Kawamoto
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES 79(9) 139-141 2003年11月  
    We prove that a number field K satisfies the following property (B) if and only if the ray class group of K defined modulo 4 is trivial. (B): For any tame abelian extensions N-1 and N-2 over K of exponent 2, the composite N1N2/K has a relative normal integral basis (NIB) if both N-1/K and N-2/K have a NIB.
  • F Kawamoto
    JOURNAL OF NUMBER THEORY 101(1) 131-137 2003年7月  
    Let F be a number field. We construct three tamely ramified quadratic extensions K-i/F (1less than or equal toiless than or equal to3) which are ramified at most at some given set of finite primes, such that K-3 subset of K1K2, both K-1/F and K-2/F have normal integral bases, but K-3/F has no normal integral basis. Since Hilbert-Speiser's theorem yields that every finite and tamely ramified abelian extension over the field of rational numbers has a normal integral basis, it seems that this example is interesting (cf. [5] J. Number Theory 79 (1999) 164; Theorem 2). As we shall explain below, the previous papers (Acta Arith. 106 (2) (2003) 171-181; Abh. Math. Sem. Univ. Hamburg 72 (2002) 217-233) motivated the construction. We prove that if the class number of F is bigger than 1, or the strict ray class group Cl-4I0, of F modulo 4 has an element of order greater than or equal to3, then there exist infinitely many triplets (K-1, K-2, K-3) of such fields. (C) 2003 Elsevier Science (USA). All rights reserved.
  • H Ichimura, F Kawamoto
    ACTA ARITHMETICA 106(2) 171-181 2003年  
  • Fuminori Kawamoto, Yoshitaka Odai
    Abh. Math. Sem. Univ. Hamburg 72 217-233 2002年  
  • F Kawamoto
    JOURNAL OF NUMBER THEORY 86(1) 1-38 2001年1月  
    Let F be a quadratic field and p a prime ideal in F. Then we ask whether the ray class field of F mod p has a normal integral basis over F. We see many differences between our case and the case where the base field F is the field of rational numbers. (C) 2001 Academic Press.
  • 河本 史紀
    数理解析研究所講究録 1097 69-81 1999年4月  
  • 河本 史紀
    数理解析研究所講究録 942 98-111 1996年4月  
  • Fuminori Kawamoto
    Tokyo Journal of Mathematics 19(1) 129-146 1996年  
  • F KAWAMOTO, K KOMATSU
    JOURNAL OF ALGEBRA 163(2) 335-347 1994年1月  
  • Fuminori Kawamoto
    Tokyo Journal of Mathematics 11(2) 303-309 1988年  
  • F KAWAMOTO
    JOURNAL OF ALGEBRA 98(1) 197-199 1986年1月  
  • Fuminori Kawamoto
    Tokyo Journal of Mathematics 8(1) 275 1985年  
  • Fuminori Kawamoto
    Tokyo Journal of Mathematics 7(1) 221-231 1984年  

講演・口頭発表等

 42

共同研究・競争的資金等の研究課題

 8