Curriculum Vitaes

Kakegawa Wataru

  (掛川 渉)

Profile Information

Affiliation
Professor, Faculty of Science Department of Life Science, Gakushuin University
Keio University
Degree
博士(医学)(Gunma University)

Researcher number
70383718
J-GLOBAL ID
200901083420920416
researchmap Member ID
1000289653

Education

 3

Papers

 65
  • Wataru Kakegawa, Ana V Paternain, Keiko Matsuda, M Isabel Aller, Izumi Iida, Eriko Miura, Kazuya Nozawa, Tokiwa Yamasaki, Kenji Sakimura, Michisuke Yuzaki, Juan Lerma
    Cell reports, 114427-114427, Jul 1, 2024  
    Kainate (KA)-type glutamate receptors (KARs) are implicated in various neuropsychiatric and neurological disorders through their ionotropic and metabotropic actions. However, compared to AMPA- and NMDA-type receptor functions, many aspects of KAR biology remain incompletely understood. Our study demonstrates an important role of KARs in organizing climbing fiber (CF)-Purkinje cell (PC) synapses and synaptic plasticity in the cerebellum, independently of their ion channel or metabotropic functions. The amino-terminal domain (ATD) of the GluK4 KAR subunit binds to C1ql1, provided by CFs, and associates with Bai3, an adhesion-type G protein-coupled receptor expressed in PC dendrites. Mice lacking GluK4 exhibit no KAR-mediated responses, reduced C1ql1 and Bai3 levels, and fewer CF-PC synapses, along with impaired long-term depression and oculomotor learning. Remarkably, introduction of the ATD of GluK4 significantly improves all these phenotypes. These findings demonstrate that KARs act as synaptic scaffolds, orchestrating synapses by forming a KAR-C1ql1-Bai3 complex in the cerebellum.
  • Hiroshi Nonaka, Seiji Sakamoto, Kazuki Shiraiwa, Mamoru Ishikawa, Tomonori Tamura, Kyohei Okuno, Takumi Kondo, Shigeki Kiyonaka, Etsuo A Susaki, Chika Shimizu, Hiroki R Ueda, Wataru Kakegawa, Itaru Arai, Michisuke Yuzaki, Itaru Hamachi
    Proceedings of the National Academy of Sciences of the United States of America, 121(6) e2313887121, Feb 6, 2024  
    Neurotransmitter receptors are essential components of synapses for communication between neurons in the brain. Because the spatiotemporal expression profiles and dynamics of neurotransmitter receptors involved in many functions are delicately governed in the brain, in vivo research tools with high spatiotemporal resolution for receptors in intact brains are highly desirable. Covalent labeling by chemical reaction (chemical labeling) of proteins without genetic manipulation is now a powerful method for analyzing receptors in vitro. However, selective target receptor labeling in the brain has not yet been achieved. This study shows that ligand-directed alkoxyacylimidazole (LDAI) chemistry can be used to selectively tether synthetic probes to target endogenous receptors in living mouse brains. The reactive LDAI reagents with negative charges were found to diffuse well over the whole brain and could selectively label target endogenous receptors, including AMPAR, NMDAR, mGlu1, and GABAAR. This simple and robust labeling protocol was then used for various applications: three-dimensional spatial mapping of endogenous receptors in the brains of healthy and disease-model mice; multi-color receptor imaging; and pulse-chase analysis of the receptor dynamics in postnatal mouse brains. Here, results demonstrated that bioorthogonal receptor modification in living animal brains may provide innovative molecular tools that contribute to the in-depth understanding of complicated brain functions.
  • Ken-Ichi Dewa, Nariko Arimura, Wataru Kakegawa, Masayuki Itoh, Toma Adachi, Satoshi Miyashita, Yukiko U Inoue, Kento Hizawa, Kei Hori, Natsumi Honjoya, Haruya Yagishita, Shinichiro Taya, Taisuke Miyazaki, Chika Usui, Shoji Tatsumoto, Akiko Tsuzuki, Hirotomo Uetake, Kazuhisa Sakai, Kazuhiro Yamakawa, Takuya Sasaki, Jun Nagai, Yoshiya Kawaguchi, Masaki Sone, Takayoshi Inoue, Yasuhiro Go, Noritaka Ichinohe, Kozo Kaibuchi, Masahiko Watanabe, Schuichi Koizumi, Michisuke Yuzaki, Mikio Hoshino
    Nature communications, 15(1) 458-458, Feb 1, 2024  Peer-reviewed
    In the central nervous system, astrocytes enable appropriate synapse function through glutamate clearance from the synaptic cleft; however, it remains unclear how astrocytic glutamate transporters function at peri-synaptic contact. Here, we report that Down syndrome cell adhesion molecule (DSCAM) in Purkinje cells controls synapse formation and function in the developing cerebellum. Dscam-mutant mice show defects in CF synapse translocation as is observed in loss of function mutations in the astrocytic glutamate transporter GLAST expressed in Bergmann glia. These mice show impaired glutamate clearance and the delocalization of GLAST away from the cleft of parallel fibre (PF) synapse. GLAST complexes with the extracellular domain of DSCAM. Riluzole, as an activator of GLAST-mediated uptake, rescues the proximal impairment in CF synapse formation in Purkinje cell-selective Dscam-deficient mice. DSCAM is required for motor learning, but not gross motor coordination. In conclusion, the intercellular association of synaptic and astrocyte proteins is important for synapse formation and function in neural transmission.
  • Chika Saegusa, Wataru Kakegawa, Eriko Miura, Takahiro Aimi, Sachiyo Mogi, Tatsuhiko Harada, Taku Yamashita, Michisuke Yuzaki, Masato Fujioka
    International journal of molecular sciences, 24(23), Dec 4, 2023  
    Mammalian auditory hair cells transduce sound-evoked traveling waves in the cochlea into nerve stimuli, which are essential for hearing function. Pillar cells located between the inner and outer hair cells are involved in the formation of the tunnel of Corti, which incorporates outer-hair-cell-driven fluid oscillation and basilar membrane movement, leading to the fine-tuned frequency-specific perception of sounds by the inner hair cells. However, the detailed molecular mechanism underlying the development and maintenance of pillar cells remains to be elucidated. In this study, we examined the expression and function of brain-specific angiogenesis inhibitor 3 (Bai3), an adhesion G-protein-coupled receptor, in the cochlea. We found that Bai3 was expressed in hair cells in neonatal mice and pillar cells in adult mice, and, interestingly, Bai3 knockout mice revealed the abnormal formation of pillar cells, with the elevation of the hearing threshold in a frequency-dependent manner. Furthermore, old Bai3 knockout mice showed the degeneration of hair cells and spiral ganglion neurons in the basal turn. The results suggest that Bai3 plays a crucial role in the development and/or maintenance of pillar cells, which, in turn, are necessary for normal hearing function. Our results may contribute to understanding the mechanisms of hearing loss in human patients.
  • Zhi Zhou, Wataru Kakegawa, Koki Fujimori, Misato Sho, Rieko Shimamura, Sopak Supakul, Sho Yoshimatsu, Jun Kohyama, Michisuke Yuzaki, Hideyuki Okano
    Feb 12, 2023  
    Abstract Cortical excitatory neurons (Cx neurons) are the most dominant neuronal cell type in the cerebral cortex, which play a central role in cognition, perception, intellectual behavior and emotional processing. Robustin vitroinduction of Cx neurons may facilitate as a tool for the elucidation of brain development and pathomechanism of the intractable neurodevelopmental and neurodegenerative disorders including Alzheimer’s disease, and thus potentially contribute to drug development. Here, we report a defined method for efficient induction of Cx neurons from the feeder-free-conditioned human embryonic stem cells (ES cells) and induced pluripotent stem cells (iPS cells). By using this method, human ES/iPS cells could be differentiated into ~99% MAP2-positive neurons by three weeks, and these induced neurons, within five weeks, presented various characteristics of mature excitatory neurons such as strong expression of glutamatergic neuron-specific markers (subunits of AMPA and NDMA receptors and CAMKIIα), highly synchronized spontaneous firing and excitatory postsynaptic current (EPSC). Moreover, the Cx neurons showed susceptibility to the toxicity of Aβ42oligomers and excitotoxicity of excessive glutamates, which is another advantage in terms of toxicity test and searching for the therapeutic agents. Taken together, this study provides a novel research platform for the study of neural development and degeneration based on the feeder-free human ES/iPS cell system.
  • Hiroshi Nonaka, Takeharu Mino, Seiji Sakamoto, Jae Hoon Oh, Yu Watanabe, Mamoru Ishikawa, Akihiro Tsushima, Kazuma Amaike, Shigeki Kiyonaka, Tomonori Tamura, A. Radu Aricescu, Wataru Kakegawa, Eriko Miura, Michisuke Yuzaki, Itaru Hamachi
    Chem, 9(2) 523-540, Feb, 2023  
  • Kento Ojima, Wataru Kakegawa, Tokiwa Yamasaki, Yuta Miura, Masayuki Itoh, Yukiko Michibata, Ryou Kubota, Tomohiro Doura, Eriko Miura, Hiroshi Nonaka, Seiya Mizuno, Satoru Takahashi, Michisuke Yuzaki, Itaru Hamachi, Shigeki Kiyonaka
    Nature communications, 13(1) 3167-3167, Jun 16, 2022  
    Direct activation of cell-surface receptors is highly desirable for elucidating their physiological roles. A potential approach for cell-type-specific activation of a receptor subtype is chemogenetics, in which both point mutagenesis of the receptors and designed ligands are used. However, ligand-binding properties are affected in most cases. Here, we developed a chemogenetic method for direct activation of metabotropic glutamate receptor 1 (mGlu1), which plays essential roles in cerebellar functions in the brain. Our screening identified a mGlu1 mutant, mGlu1(N264H), that was activated directly by palladium complexes. A palladium complex showing low cytotoxicity successfully activated mGlu1 in mGlu1(N264H) knock-in mice, revealing that activation of endogenous mGlu1 is sufficient to evoke the critical cellular mechanism of synaptic plasticity, a basis of motor learning in the cerebellum. Moreover, cell-type-specific activation of mGlu1 was demonstrated successfully using adeno-associated viruses in mice, which shows the potential utility of this chemogenetics for clarifying the physiological roles of mGlu1 in a cell-type-specific manner.
  • Atsuki Kawamura, Yuta Katayama, Wataru Kakegawa, Daisuke Ino, Masaaki Nishiyama, Michisuke Yuzaki, Keiichi I Nakayama
    Cell reports, 35(1) 108932-108932, Apr 6, 2021  
    Mutations in the gene encoding the chromatin remodeler chromodomain helicase DNA-binding protein 8 (CHD8) are a highly penetrant risk factor for autism spectrum disorder (ASD). Although cerebellar abnormalities have long been thought to be related to ASD pathogenesis, it has remained largely unknown whether dysfunction of CHD8 in the cerebellum contributes to ASD phenotypes. We here show that cerebellar granule neuron progenitor (GNP)-specific deletion of Chd8 in mice impairs the proliferation and differentiation of these cells as well as gives rise to cerebellar hypoplasia and a motor coordination defect, but not to ASD-like behavioral abnormalities. CHD8 is found to regulate the expression of neuronal genes in GNPs. It also binds preferentially to promoter regions and modulates local chromatin accessibility of transcriptionally active genes in these cells. Our results have thus uncovered a key role for CHD8 in cerebellar development, with important implications for understanding the contribution of this brain region to ASD pathogenesis.
  • Kunimichi Suzuki, Jonathan Elegheert, Inseon Song, Hiroyuki Sasakura, Oleg Senkov, Keiko Matsuda, Wataru Kakegawa, Amber J Clayton, Veronica T Chang, Maura Ferrer-Ferrer, Eriko Miura, Rahul Kaushik, Masashi Ikeno, Yuki Morioka, Yuka Takeuchi, Tatsuya Shimada, Shintaro Otsuka, Stoyan Stoyanov, Masahiko Watanabe, Kosei Takeuchi, Alexander Dityatev, A Radu Aricescu, Michisuke Yuzaki
    Science (New York, N.Y.), 369(6507), Aug 28, 2020  
    Neuronal synapses undergo structural and functional changes throughout life, which are essential for nervous system physiology. However, these changes may also perturb the excitatory-inhibitory neurotransmission balance and trigger neuropsychiatric and neurological disorders. Molecular tools to restore this balance are highly desirable. Here, we designed and characterized CPTX, a synthetic synaptic organizer combining structural elements from cerebellin-1 and neuronal pentraxin-1. CPTX can interact with presynaptic neurexins and postsynaptic AMPA-type ionotropic glutamate receptors and induced the formation of excitatory synapses both in vitro and in vivo. CPTX restored synaptic functions, motor coordination, spatial and contextual memories, and locomotion in mouse models for cerebellar ataxia, Alzheimer's disease, and spinal cord injury, respectively. Thus, CPTX represents a prototype for structure-guided biologics that can efficiently repair or remodel neuronal circuits.
  • Mariko Kato Hayashi, Tomoki Nishioka, Hideo Shimizu, Kanako Takahashi, Wataru Kakegawa, Tetsuri Mikami, Yuri Hirayama, Schuichi Koizumi, Sachiko Yoshida, Michisuke Yuzaki, Markku Tammi, Yuko Sekino, Kozo Kaibuchi, Yukari Shigemoto-Mogami, Masato Yasui, Kaoru Sato
    Journal of neurochemistry, 150(3) 249-263, Aug, 2019  
    Hyaluronan is synthesized, secreted, and anchored by hyaluronan synthases (HAS) at the plasma membrane and comprises the backbone of perineuronal nets around neuronal soma and dendrites. However, the molecular targets of hyaluronan to regulate synaptic transmission in the central nervous system have not been fully identified. Here, we report that hyaluronan is a negative regulator of excitatory signals. At excitatory synapses, glutamate is removed by glutamate transporters to turn off the signal and prevent excitotoxicity. Hyaluronan synthesized by HAS supports the activity of glial glutamate transporter 1 (GLT1). GLT1 also retracted from cellular processes of cultured astrocytes after hyaluronidase treatment and hyaluronan synthesis inhibition. A serial knockout study showed that all three HAS subtypes recruit GLT1 to cellular processes. Furthermore, hyaluronidase treatment activated neurons in a dissociated rat hippocampal culture and caused neuronal damage due to excitotoxicity. Our findings reveal that hyaluronan helps to turn off excitatory signals by supporting glutamate clearance. Cover Image for this issue: doi: 10.1111/jnc.14516.
  • Keiji Ibata, Maya Kono, Sakae Narumi, Junko Motohashi, Wataru Kakegawa, Kazuhisa Kohda, Michisuke Yuzaki
    Neuron, 102(6) 1184-1198, Jun 19, 2019  
    Synapse formation is achieved by various synaptic organizers. Although this process is highly regulated by neuronal activity, the underlying molecular mechanisms remain largely unclear. Here we show that Cbln1, a synaptic organizer of the C1q family, is released from lysosomes in axons but not dendrites of cerebellar granule cells in an activity- and Ca2+-dependent manner. Exocytosed Cbln1 was retained on axonal surfaces by binding to its presynaptic receptor neurexin. Cbln1 further diffused laterally along the axonal surface and accumulated at boutons by binding postsynaptic δ2 glutamate receptors. Cbln1 exocytosis was insensitive to tetanus neurotoxin, accompanied by cathepsin B release, and decreased by disrupting lysosomes. Furthermore, overexpression of lysosomal sialidase Neu1 not only inhibited Cbln1 and cathepsin B exocytosis in vitro but also reduced axonal bouton formation in vivo. Our findings imply that co-release of Cbln1 and cathepsin B from lysosomes serves as a new mechanism of activity-dependent coordinated synapse modification.
  • Kono M, Kakegawa W, Yoshida K, Yuzaki M
    Journal of Physiology, 597(3) 903-920, Feb 1, 2019  
    © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society Key points: NMDA receptors (NMDARs) are required for long-term depression (LTD) at parallel fibre–Purkinje cell synapses, but their cellular localization and physiological functions in vivo are unclear. NMDARs in molecular-layer interneurons (MLIs), but not granule cells or Purkinje cells, are required for LTD, but not long-term potentiation induced by low-frequency stimulation of parallel fibres. Nitric oxide produced by NMDAR activation in MLIs probably mediates LTD induction. NMDARs in granule cells or Purkinje cells are dispensable for motor learning during adaptation of horizontal optokinetic responses. Abstract: Long-term potentiation (LTP) and depression (LTD), which serve as cellular synaptic plasticity models for learning and memory, are crucially regulated by N-methyl-d-aspartate receptors (NMDARs) in various brain regions. In the cerebellum, LTP and LTD at parallel fibre (PF)–Purkinje cell (PC) synapses are thought to mediate certain forms of motor learning. However, while NMDARs are essential for LTD in vitro, their cellular localization remains controversial. In addition, whether and
  • Shinji Matsuda, Wataru Kakegawa, Michisuke Yuzaki
    Communicative & integrative biology, 12(1) 34-37, 2019  
    In the central nervous system, activity-dependent endocytosis of postsynaptic AMPA-type glutamate receptors (AMPA receptors) is thought to mediate long-term depression (LTD), which is a synaptic plasticity model in various neuronal circuits. However, whether and how AMPA receptor endocytosis and LTD at specific synapses are causally linked to learning and memory in vivo remains unclear. Recently, we developed a new optogenetic tool, PhotonSABER, which could control AMPA receptor endocytosis in temporal, spatial, and cell-type-specific manners at activated synapses. Using PhotonSABER, we found that AMPA receptor endocytosis and LTD at synapses between parallel fibers and Purkinje cells in the cerebellum mediate oculomotor learning. We also found that PhotonSABER could inhibit endocytosis of epidermal growth factor receptors in HeLa cells upon light stimulation. These results demonstrate that PhotonSABER is a powerful tool for analyzing the physiological functions of endocytosis in non-neuronal cells, as well as the roles of LTD in various brain regions.
  • Shintaro Saegusa, Masahiro Fukaya, Wataru Kakegawa, Manabu Tanaka, Osamu Katsumata, Takeyuki Sugawara, Yoshinobu Hara, Makoto Itakura, Tadashi Okubo, Toshiya Sato, Michisuke Yuzaki, Hiroyuki Sakagami
    PloS one, 14(5) e0216960, 2019  
    ADP ribosylation factor 6 (Arf6) is a small GTPase that regulates various neuronal events including formation of the axon, dendrites and dendritic spines, and synaptic plasticity through actin cytoskeleton remodeling and endosomal trafficking. EFA6C, also known as Psd2, is a guanine nucleotide exchange factor for Arf6 that is preferentially expressed in the cerebellar cortex of adult mice, particularly in Purkinje cells. However, the roles of EFA6C in cerebellar development and functions remain unknown. In this study, we generated global EFA6C knockout (KO) mice using the CRISPR/Cas9 system and investigated their cerebellar phenotypes by histological and behavioral analyses. Histological analyses revealed that EFA6C KO mice exhibited normal gross anatomy of the cerebellar cortex, in terms of the thickness and cellularity of each layer, morphology of Purkinje cells, and distribution patterns of parallel fibers, climbing fibers, and inhibitory synapses. Electron microscopic observation of the cerebellar molecular layer revealed that the density of asymmetric synapses of Purkinje cells was significantly lower in EFA6C KO mice compared with wild-type control mice. However, behavioral analyses using accelerating rotarod and horizontal optokinetic response tests failed to detect any differences in motor coordination, learning or adaptation between the control and EFA6C KO mice. These results suggest that EFA6C plays ancillary roles in cerebellar development and motor functions.
  • Hamoud N, Tran V, Aimi T, Kakegawa W, Lahaie S, Thibault M, Pelletier A, Wong G, Kim I, Kania A, Yuzaki M, Bouvier M, Côté J
    Nature Communications, 9(1) 4470-4470, Dec 1, 2018  
    © 2018, The Author(s). Myoblast fusion is tightly regulated during development and regeneration of muscle fibers. BAI3 is a receptor that orchestrates myoblast fusion via Elmo/Dock1 signaling, but the mechanisms regulating its activity remain elusive. Here we report that mice lacking BAI3 display small muscle fibers and inefficient muscle regeneration after cardiotoxin-induced injury. We describe two proteins that repress or activate BAI3 in muscle progenitors. We find that the secreted C1q-like1–4 proteins repress fusion by specifically interacting with BAI3. Using a proteomic approach, we identify Stabilin-2 as a protein that interacts with BAI3 and stimulates its fusion promoting activity. We demonstrate that Stabilin-2 activates the GPCR activity of BAI3. The resulting activated heterotrimeric G-proteins contribute to the initial recruitment of Elmo proteins to the membrane, which are then stabilized on BAI3 through a direct interaction. Collectively, our results demonstrate that the activity of BAI3 is spatiotemporally regulated by C1qL4 and Stabilin-2 during myoblast fusion.
  • 掛川渉, 柚﨑通介, 松田信爾
    ライフサイエンス 新着論文レビュー, DOI: 10.7875/first.author.2018, Sep 10, 2018  Invited
  • KAKEGAWA WATARU
    Neuron, 99(5) 985-998, Sep 5, 2018  Peer-reviewed
    © 2018 Elsevier Inc. Long-term depression (LTD) of AMPA-type glutamate receptor (AMPA receptor)-mediated synaptic transmission has been proposed as a cellular substrate for learning and memory. Although activity-induced AMPA receptor endocytosis is believed to underlie LTD, it remains largely unclear whether LTD and AMPA receptor endocytosis at specific synapses are causally linked to learning and memory in vivo. Here we developed a new optogenetic tool, termed PhotonSABER, which enabled the temporal, spatial, and cell-type-specific control of AMPA receptor endocytosis at active synapses, while the basal synaptic properties and other forms of synaptic plasticity were unaffected. We found that fiberoptic illumination to Purkinje cells expressing PhotonSABER in vivo inhibited cerebellar motor learning during adaptation of the horizontal optokinetic response and vestibulo-ocular reflex, as well as synaptic AMPA receptor decrease in the flocculus. Our results demonstrate that LTD and AMPA receptor endocytosis at specific neuronal circuits were directly responsible for motor learning in vivo. Video Abstract: Kakegawa et al. show that AMPA receptor endocytosis at parallel fiber-Purkinje
  • Kakegawa W, Yuzaki M
    Brain and nerve = Shinkei kenkyu no shinpo, 70(7) 677-687, Jul 1, 2018  
    The synapse is a structure connecting neurons in the brain, which is crucial for learning and memory. Accumulating evidence suggests that synapses continuously change in function and structure in response to learning and memory. Especially, in the cerebellum, which underlies motor learning and memory, synapses are highly dynamic throughout life. Recently, various types of molecules involving synapse integrity, learning and memory, such as δ-type glutamate receptors (GluD receptors) and C1q-family proteins, have been identified.
  • Sho Wakayama, Shigeki Kiyonaka, Itaru Arai, Wataru Kakegawa, Shinji Matsuda, Keiji Ibata, Yuri L. Nemoto, Akihiro Kusumi, Michisuke Yuzaki, Itaru Hamachi
    NATURE COMMUNICATIONS, 8 14850, Apr, 2017  Peer-reviewed
  • Jonathan Elegheert, Wataru Kakegawa, Jordan E. Clay, Natalie F. Shanks, Ester Behiels, Keiko Matsuda, Kazuhisa Kohda, Eriko Miura, Maxim Rossmann, Nikolaos Mitakidis, Junko Motohashi, Veronica T. Chang, Christian Siebold, Ingo H. Greger, Terunaga Nakagawa, Michisuke Yuzaki, A. Radu Aricescu
    SCIENCE, 353(6296) 295-299, Jul, 2016  Peer-reviewed
  • Keiko Matsuda, Timotheus Budisantoso, Nikolaos Mitakidis, Yuki Sugaya, Eriko Miura, Wataru Kakegawa, Miwako Yamasaki, Kohtarou Konno, Motokazu Uchigashima, Manabu Abe, Izumi Watanabe, Masanobu Kano, Masahiko Watanabe, Kenji Sakimura, A. Radu Aricescu, Michisuke Yuzaki
    NEURON, 90(4) 752-767, May, 2016  Peer-reviewed
  • Wataru Kakegawa, Michisuke Yuzaki
    D-Amino Acids: Physiology, Metabolism, and Application, 65-80, Jan 1, 2016  
  • Kazuhisa Kohda, Wataru Kakegawa, Michisuke Yuzaki
    Essentials of Cerebellum and Cerebellar Disorders: A Primer for Graduate Students, 329-334, Jan 1, 2016  
  • Yukari H. Takeo, Wataru Kakegawa, Eriko Miura, Michisuke Yuzaki
    JOURNAL OF NEUROSCIENCE, 35(36) 12518-12534, Sep, 2015  
  • Wataru Kakegawa, Nikolaos Mitakidis, Eriko Miura, Manabu Abe, Keiko Matsuda, Yukari H. Takeo, Kazuhisa Kohda, Junko Motohashi, Akiyo Takahashi, Soichi Nagao, Shin-ichi Muramatsu, Masahiko Watanabe, Kenji Sakimura, A. Radu Aricescu, Michisuke Yuzaki
    NEURON, 85(2) 316-329, Jan, 2015  
  • Tetsushi Sadakata, Wataru Kakegawa, Yo Shinoda, Mayu Hosono, Ritsuko Katoh-Semba, Yukiko Sekine, Yumi Sato, Chihiro Saruta, Yasuki Ishizaki, Michisuke Yuzaki, Masami Kojima, Teiichi Furuichi
    PLOS ONE, 9(6), Jun, 2014  
  • Aya Ito-Ishida, Wataru Kakegawa, Kazuhisa Kohda, Eriko Miura, Shigeo Okabe, Michisuke Yuzaki
    EUROPEAN JOURNAL OF NEUROSCIENCE, 39(8) 1268-1280, Apr, 2014  
  • Shinji Matsuda, Wataru Kakegawa, Timotheus Budisantoso, Toshihiro Nomura, Kazuhisa Kohda, Michisuke Yuzaki
    NATURE COMMUNICATIONS, 4, Nov, 2013  
  • Kyoichi Emi, Wataru Kakegawa, Eriko Miura, Aya Ito-Ishida, Kazuhisa Kohda, Michisuke Yuzaki
    FRONTIERS IN NEURAL CIRCUITS, 7(NOV), Nov, 2013  
  • Tetsushi Sadakata, Wataru Kakegawa, Yo Shinoda, Mayu Hosono, Ritsuko Katoh-Semba, Yukiko Sekine, Yumi Sato, Mika Tanaka, Takuji Iwasato, Shigeyoshi Itohara, Kenichiro Furuyama, Yoshiya Kawaguchi, Yasuki Ishizaki, Michisuke Yuzaki, Teiichi Furuichi
    JOURNAL OF NEUROSCIENCE, 33(44) 17326-17334, Oct, 2013  
  • L. Benjamin Hills, Amira Masri, Kotaro Konno, Wataru Kakegawa, Anh-Thu N. Lam, Elizabeth Lim-Melia, Nandini Chandy, R. Sean Hill, Jennifer N. Partlow, Muna Al-Saffar, Ramzi Nasir, Joan M. Stoler, A. James Barkovich, Masahiko Watanabe, Michisuke Yuzaki, Ganeshwaran H. Mochida
    NEUROLOGY, 81(16) 1378-1386, Oct, 2013  
  • Kazuhisa Kohda, Wataru Kakegawa, Shinji Matsuda, Tadashi Yamamoto, Hisashi Hirano, Michisuke Yuzaki
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 110(10) E948-E957, Mar, 2013  
  • Kazuhisa Kohda, Wataru Kakegawa, Michisuke Yuzaki
    Communicative and Integrative Biology, 6(6), 2013  
  • Jun Nishiyama, Yukari Hayashi, Toshihiro Nomura, Eriko Miura, Wataru Kakegawa, Michisuke Yuzaki
    EUROPEAN JOURNAL OF NEUROSCIENCE, 36(7) 2867-2876, Oct, 2012  
  • Toshihiro Nomura, Wataru Kakegawa, Shinji Matsuda, Kazuhisa Kohda, Jun Nishiyama, Takao Takahashi, Michisuke Yuzaki
    EUROPEAN JOURNAL OF NEUROSCIENCE, 35(3) 402-410, Feb, 2012  
  • Takamitsu Unoki, Shinji Matsuda, Wataru Kakegawa, Ngo Thai Bich Van, Kazuhisa Kohda, Atsushi Suzuki, Yuji Funakoshi, Hiroshi Hasegawa, Michisuke Yuzaki, Yasunori Kanaho
    NEURON, 73(1) 135-148, Jan, 2012  
  • Kyoichi Emi, Kazuhisa Kohda, Wataru Kakegawa, Sakae Narumi, Michisuke Yuzaki
    NEUROCHEMICAL RESEARCH, 36(7) 1314-1322, Jul, 2011  
  • Wataru Kakegawa, Yurika Miyoshi, Kenji Hamase, Shinji Matsuda, Keiko Matsuda, Kazuhisa Kohda, Kyoichi Emi, Junko Motohashi, Ryuichi Konno, Kiyoshi Zaitsu, Michisuke Yuzaki
    NATURE NEUROSCIENCE, 14(5) 603-U93, May, 2011  
  • 幸田 和久, 掛川 渉, 柚崎 通介
    生体の科学, 61(5) 382-383, Oct, 2010  
  • 野村 寿博, 掛川 渉, 松田 信爾, 幸田 和久, 柚崎 通介
    神経化学, 49(2-3) 694-694, Aug, 2010  
  • Keiko Matsuda, Eriko Miura, Taisuke Miyazaki, Wataru Kakegawa, Kyoichi Emi, Sakae Narumi, Yugo Fukazawa, Aya Ito-Ishida, Tetsuro Kondo, Ryuichi Shigemoto, Masahiko Watanabe, Michisuke Yuzaki
    SCIENCE, 328(5976) 363-368, Apr, 2010  
  • Jun Nishiyama, Keiko Matsuda, Wataru Kakegawa, Nobuaki Yamada, Junko Motohashi, Noboru Mizushima, Michisuke Yuzaki
    JOURNAL OF NEUROSCIENCE, 30(6) 2177-2187, Feb, 2010  
  • Wataru Kakegawa, Taisuke Miyazaki, Kazuhisa Kohda, Keiko Matsuda, Kyoichi Emi, Junko Motohashi, Masahiko Watanabe, Michisuke Yuzaki
    JOURNAL OF NEUROSCIENCE, 29(18) 5738-5748, May, 2009  
  • 松田 信爾, 三浦 会理子, 掛川 渉, 幸田 和久, 渡辺 雅彦, 柚崎 通介
    解剖学雑誌, 84(Suppl.) 67-67, Mar, 2009  
  • Ryoichi Nakagami, Kazuhisa Kohda, Wataru Kakegawa, Tetsuro Kondo, Nobumasa Kato, Michisuke Yuzaki
    Keio Journal of Medicine, 57(2) 105-110, Jun, 2008  
  • Shinji Matsuda, Eriko Miura, Keiko Matsuda, Wataru Kakegawa, Kazuhisa Kohda, Masahiko Watanabe, Michisuke Yuzaki
    NEURON, 57(5) 730-745, Mar, 2008  
  • Wataru Kakegawa, Taisuke Miyazaki, Kyoichi Emi, Keiko Matsuda, Kazuhisa Kohda, Junko Motohashi, Masayoshi Mishina, Shigenori Kawahara, Masahiko Watanabe, Michisuke Yuzaki
    JOURNAL OF NEUROSCIENCE, 28(6) 1460-1468, Feb, 2008  
  • Matsuda Shinji, Miura Eriko, Kakegawa Wataru, Matsuda Keiko, Kohda Kazuhisa, Watanabe Masahiko, Yuzaki Michisuke
    NEUROSCIENCE RESEARCH, 61 S21, 2008  Peer-reviewed
  • Wataru Kakegawa, Kazuhisa Kohda, Michisuke Yuzaki
    JOURNAL OF PHYSIOLOGY-LONDON, 584(1) 89-96, Oct, 2007  

Misc.

 21

Teaching Experience

 9

Research Projects

 18