研究者業績

平野 琢也

ヒラノ タクヤ  (Takuya Hirano)

基本情報

所属
学習院大学 理学部 物理学科 教授
学位
博士(理学)(東京大学)

連絡先
takuya.hiranogakushuin.ac.jp
J-GLOBAL ID
200901062696389245
researchmap会員ID
1000246127

外部リンク

論文

 98
  • Junnosuke Takai, Kosuke Shibata, Naota Sekiguchi, Takuya Hirano
    Physical Review A 2023年5月11日  
  • Jorge Amari, Junnosuke Takai, Takuya Hirano
    Optics Continuum 2023年4月15日  
  • Aki Torii, Kosuke Shibata, Yujiro Eto, Takuya Hirano
    Optics Express 30(15) 26120-26120 2022年7月18日  査読有り
    We report on the waveguide-based generation of pulsed squeezed light at 795 nm, suitable for quantum enhanced measurements with rubidium atoms. Pulsed ultraviolet second harmonic light with a power of more than 400 mW is produced using a periodically poled LiNbO3 (PPLN) waveguide and is injected into another PPLN waveguide to generate quadrature squeezing. We find that the phase of the second harmonic pulse is shifted within a pulse, and we attribute the shift to heating due to blue-light induced infrared absorption (BLIIRA) from a comparison between the experiment and a numerical simulation. A squeezing level of −1.5(1) dB is observed in homodyne detection when we apply a linear phase shift to the local oscillator. The experiment and simulation imply that the squeezing level can be further improved by reducing BLIIRA.
  • Naota Sekiguchi, Kosuke Shibata, Aki Torii, Hiroyuki Toda, Ryohei Kuramoto, Daiki Fukuda, Takuya Hirano
    Physical Review A 104(4) 2021年10月28日  査読有り
  • Yujiro Eto, Takuya Hirano
    Japanese Journal of Applied Physics 60(5) 2021年5月  査読有り
    Second-harmonic generation (SHG) using periodically poled material in the high-conversion regime is investigated experimentally and theoretically. In the experiment, we use nanosecond pulses and periodically poled MgO:LiNbO3 waveguides with two lengths, 8.3 and 3.6 mm. In both waveguides, the conversion efficiency reaches 80% with increasing pump power and then decreases. The reduction in efficiency is more prominent for the long waveguide. For a peak power of the fundamental wave exceeding 140 W, stronger SHG is achieved by using the short waveguide. To understand these phenomena, we numerically investigate the effect of the cascaded nonlinear phase shift caused by the quasi-phase-matched SHG. The nonlinear phase shift induces an energy backflow to the fundamental wave even when effective phase matching is satisfied, and it greatly reduces the conversion efficiency, at the same level of power as the experiment.

MISC

 262

共同研究・競争的資金等の研究課題

 30