Faculty of International Social Sciences

Fumihiko Sanda

  (三田 史彦)

Profile Information

Affiliation
Gakushuin University
Degree
博士(数理科学)(Mar, 2015, 東京大学大学院)

Researcher number
80767971
J-GLOBAL ID
202201002632221650
researchmap Member ID
R000043683

Research Areas

 1

Research History

 6

Education

 4

Papers

 5
  • Masahiro Futaki, Fumihiko Sanda
    Journal of Geometry and Physics, 104929-104929, Jul, 2023  
  • Fumihiko Sanda, Yota Shamoto
    Annales de l'Institut Fourier, 70(2) 621-682, May 28, 2020  
  • Fumihiko Sanda
    International Mathematics Research Notices, 2021(1) 766-800, May 11, 2020  
    Abstract Assume the existence of a Fukaya category $\textrm{Fuk}(X)$ of a compact symplectic manifold $X$ with some expected properties. In this paper, we show $\mathscr{A} \subset \textrm{Fuk}(X)$ split generates a summand $\textrm{Fuk}(X)_e \subset \textrm{Fuk}(X)$ corresponding to an idempotent $e \in QH^{\bullet }(X)$ if the Mukai pairing of $\mathscr{A}$ is perfect. Moreover, we show $HH^{\bullet }(\mathscr{A}) \cong QH^{\bullet }(X) e$. As an application, we compute the quantum cohomology and the Fukaya category of a blow-up of $\mathbb{C} P^2$ at four points with a monotone symplectic structure.
  • Hiroshi Ohta, Fumihiko Sanda
    Pure and Applied Mathematics Quarterly, 16(3) 515-556, 2020  
  • Yoosik Kim, Jaeho Lee, Fumihiko Sanda
    International Journal of Mathematics, 30(01) 1950003-1950003, Jan, 2019  
    We provide a combinatorial way to locate non-displaceable Lagrangian toric fibers on any compact toric manifold. By taking the intersection of certain tropicalizations coming from its moment polytope, one can detect all Lagrangian toric fibers having non-vanishing Floer cohomology ([K. Fukaya, Y.-G. Oh, H. Ohta and K. Ono, Lagrangian Floer theory on compact toric manifolds, I, Duke Math. J. 151(1) (2010) 23–174; K. Fukaya, Y.-G. Oh, H. Ohta and K. Ono, Lagrangian Floer theory on compact toric manifolds II: bulk deformations, Selecta Math. (N.S.) 17(3) (2011) 609–711.]). The intersection completely characterizes all non-displaceable toric fibers, in some cases including pseudo symmetric smooth Fano varieties ([G. Ewald, On the classification of toric Fano varieties, Discrete Comput. Geom. 3(1) (1988) 49–54.]).

Research Projects

 2