Faculty of International Social Sciences

三田 史彦

サンダ フミヒコ  (Fumihiko Sanda)

基本情報

所属
学習院大学 理学部数学科 助教
学位
博士(数理科学)(2015年3月 東京大学大学院)

研究者番号
80767971
J-GLOBAL ID
202201002632221650
researchmap会員ID
R000043683

学歴

 4

論文

 5
  • Masahiro Futaki, Fumihiko Sanda
    Journal of Geometry and Physics 104929-104929 2023年7月  
  • Fumihiko Sanda, Yota Shamoto
    Annales de l'Institut Fourier 70(2) 621-682 2020年5月28日  
  • Fumihiko Sanda
    International Mathematics Research Notices 2021(1) 766-800 2020年5月11日  
    Abstract Assume the existence of a Fukaya category $\textrm{Fuk}(X)$ of a compact symplectic manifold $X$ with some expected properties. In this paper, we show $\mathscr{A} \subset \textrm{Fuk}(X)$ split generates a summand $\textrm{Fuk}(X)_e \subset \textrm{Fuk}(X)$ corresponding to an idempotent $e \in QH^{\bullet }(X)$ if the Mukai pairing of $\mathscr{A}$ is perfect. Moreover, we show $HH^{\bullet }(\mathscr{A}) \cong QH^{\bullet }(X) e$. As an application, we compute the quantum cohomology and the Fukaya category of a blow-up of $\mathbb{C} P^2$ at four points with a monotone symplectic structure.
  • Hiroshi Ohta, Fumihiko Sanda
    Pure and Applied Mathematics Quarterly 16(3) 515-556 2020年  
  • Yoosik Kim, Jaeho Lee, Fumihiko Sanda
    International Journal of Mathematics 30(01) 1950003-1950003 2019年1月  
    We provide a combinatorial way to locate non-displaceable Lagrangian toric fibers on any compact toric manifold. By taking the intersection of certain tropicalizations coming from its moment polytope, one can detect all Lagrangian toric fibers having non-vanishing Floer cohomology ([K. Fukaya, Y.-G. Oh, H. Ohta and K. Ono, Lagrangian Floer theory on compact toric manifolds, I, Duke Math. J. 151(1) (2010) 23–174; K. Fukaya, Y.-G. Oh, H. Ohta and K. Ono, Lagrangian Floer theory on compact toric manifolds II: bulk deformations, Selecta Math. (N.S.) 17(3) (2011) 609–711.]). The intersection completely characterizes all non-displaceable toric fibers, in some cases including pseudo symmetric smooth Fano varieties ([G. Ewald, On the classification of toric Fano varieties, Discrete Comput. Geom. 3(1) (1988) 49–54.]).

共同研究・競争的資金等の研究課題

 2