Chen Zhu, Kodai Saito, Masahiro Yamanaka, Takahiko Akiyama
ACCOUNTS OF CHEMICAL RESEARCH, 48(2) 388-398, Feb, 2015
The asymmetric reduction of ketimines is an important method for the preparation of amines in optically pure form. Inspired by the biological system using NAD(P)H, Hantzsch ester has been extensively employed as a hydrogen donor in combination with chiral phosphoric acid for the transfer hydrogenation of ketimines to furnish amines with high to excellent enantioselectivities.
We focused on 2-substituted benzothiazoline as a hydrogen donor in the phosphoric acid catalyzed transfer hydrogenation reaction of ketimines for the following reasons: (1) benzothiazoline is readily prepared just by mixing 2-aminobenzenethiol and aldehyde, (2) both reactivity (hydrogen donating ability) and enantioselectivity would be controlled by tuning the 2-substituent of benzothiazoline, and (3) benzothiazoline can be stored in a refrigerator under inert atmosphere without conceivable decomposition. Both the 2-position of benzothiazoline and the 3,3'-position of phosphoric acid are tunable in order to achieve excellent enantioselectivity.
Benzothiazoline proved to be useful hydrogen donor in combination with chiral phosphoric acid for the transfer hydrogenation reaction of ketimine derivatives to afford the corresponding amines with high to excellent enantioselectivities by tuning the 2-substituent of benzothiazoline. Ketimines derived from acetophenone, propiophenone, a-keto ester, trifluoromethyl ketone, and difluoromethyl ketone derivatives proved to be suitable substrates. Benzothiazoline could be generated in situ starting from 2-aminobenzenethiol and aromatic aldehyde in the presence of ketimine and chiral phosphoric acid and successfully worked in the sequential transfer hydrogenation reaction. The reductive amination of dialkyl ketones also proceeded with high enantioselectivities. Use of 2-deuterated benzothiazoline led to the formation of a-deuterated amines with excellent enantioselectivities. The kinetic isotope effect (k(H)/k(C) = 3.8) was observed in the competitive reaction between H- and D-benzothiazoline, which explicitly implies that the cleavage of the CH (CD) bond is the rate-determining step in the transfer hydrogenation reaction.
Benzothiazoline yielded products with higher enantioselectivity in the transfer hydrogenation reaction of ketimines, particularly ketimines derived from propiophenone derivatives, than Hantzsch ester. DFT study elucidated the mechanism, as well as the difference in selectivity, between benzothiazoline and Hantzsch ester. The chiral phosphoric acid activates ketimines and benzothiazoline by means of the Bronsted acidic site (proton) and the Bronsted basic site (phosphoryl oxygen), respectively, to accelerate the hydride transfer reaction.