学習院大学研究者情報
研究者情報
Researcher Information
 

日本語 | English
 

理学部 数学科

Researcher List >> Shu Nakamura
 

Shu Nakamura

 
Avatar
NameShu Nakamura
AffiliationGakushuin University
SectionGraduate School of Mathematical Sciences
Degree理学博士(東京大学)
Research funding number50183520

研究キーワード

 
microlocal analysis , semiclasical analysis , scattering theory , Schrodinger equations

研究分野

 
  • Natural sciences / Basic analysis / functional analysis, functional equations

論文

 
Behrndt Jussi, Gesztesy Fritz, Nakamura Shu
MATHEMATISCHE ANNALEN   371(3-4) 1255-1300   Aug 2018   [Refereed]
Takuro Matsuta, Tohru Koma, Shu Nakamura
ANNALES HENRI POINCARE   18(2) 519-528   Feb 2017   [Refereed]
We improve the Lieb-Robinson bound for a wide class of quantum many-body systems with long-range interactions decaying by power law. As an application, we show that the group velocity of information propagation grows by power law in time for such ...
Shu Nakamura
J. Math. Sci. Univ. Tokyo   24 239-257   2017   [Refereed]
Shu Nakamura
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS   41(6) 894-912   2016   [Refereed]
We consider the scattering theory for a pair of operators H-0 and H=H-0+V on L-2(M, m), where M is a Riemannian manifold, H-0 is a multiplication operator on M, and V is a pseudodifferential operator of order - , >1. We show that a time-depende...
Shu Nakamura
JOURNAL OF MATHEMATICAL PHYSICS   55(11)    Nov 2014   [Refereed]
We consider the scattering theory for discrete Schrodinger operators on Z(d) with long-range potentials. We prove the existence of modified wave operators constructed in terms of solutions of a Hamilton-Jacobi equation on the torus T-d. (C) 2014 A...

MISC

 
Shu Nakamura
   Apr 2018
We consider scattering matrix for Schr\&quot;odinger-type operators on Tex with<br />
perturbation Tex as Tex. We show that<br />
the scattering matrix (with time-independent modifiers) is a pseudodifferent...
Shu Nakamura
   Apr 2018
We show that the scattering matrix for a class of Schr\&quot;odinger-type<br />
operators with long-range perturbations is a Fourier integral operator with the<br />
phase function which is the generating function of the modified classical<br />
s...
Jussi Behrndt, Fritz Gesztesy, Shu Nakamura
   Oct 2017
For the pair Tex of self-adjoint<br />
Schr\&quot;{o}dinger operators in Tex a spectral shift function is<br />
determined in an explicit form with the help of (energy parameter dependent...
Jussi Behrndt, Fritz Gesztesy, Shu Nakamura
   Sep 2016
The spectral shift function of a pair of self-adjoint operators is expressed<br />
via an abstract operator valued Titchmarsh--Weyl Tex-function. This general<br />
result is applied to different self-adjoint realizations of second-order<br />
ell...
Shu Nakamura
   Feb 2016
Let Tex be a Schr\&quot;odinger type operator with long-range perturbation. We<br />
study the wave front set of the distribution kernel of Tex, where Tex is in the absolutely continous spectrumof Tex.The<br />
res...